scholarly journals Identification of Non-coding RNA Biomarkers in Stress-induced Depression via Comprehensive Analysis of Competing Endogenous RNA Network

Author(s):  
xuanjun liu ◽  
Lan Yan ◽  
Chun Lin ◽  
Yiliang Zhang ◽  
Haofei Miao ◽  
...  

Abstract BackgroundDepression is one of the most common psychiatric disease worldwide. Although the research about the pathogenesis of depression have achieved progress, the detailed effect of non-coding RNAs (ncRNAs) in depression are still not clearly elucidated. This study was aimed to identify non-coding RNA biomarkers in stress-induced depression via comprehensive analysis of competing endogenous RNA networkMethodsIn this present study, we acquired RNA expression from RNA seq expression profile in three mice with depressive-like behaviors using chronic restraint stress paradigm and three C57BL/6J wild-type mice as control mice. ResultsA total of 41 differentially expressed circular RNAs (circRNAs) and 181 differentially expressed messenger RNAs (mRNAs) were up-regulated, and 65 differentially expressed circRNAs and 289 differentially expressed mRNAs were down-regulated, which were selected by a threshold of fold change ≥2 and a p-value < 0.05. Gene Ontology was performed to analyze the biological functions, and we predicted potential signaling pathways based on Kyoto Encyclopedia of Genes and Genomes pathway database. In addition, we constructed a circRNA-microRNA (miRNA)-mRNA regulatory network to further identify non-coding RNAs biomarkers. ConclusionsOur findings provide a promising perspective for further research into molecular mechanisms of depression, and targeting circRNA -mediated competing endogenous RNA (ceRNA) network is a useful strategy to early recognize the depression.

2019 ◽  
Vol 18 ◽  
pp. 153303381985323 ◽  
Author(s):  
Zhenzhen Gao ◽  
Peng Fu ◽  
Zhengyi Yu ◽  
Fuxi Zhen ◽  
Yanhong Gu

Background: Non-coding RNAs are competing endogenous RNAs in the occurrence and development of tumorigenesis; numerous microRNAs are aberrantly expressed in colon cancer tissues and play significant roles in oncogenesis development and metastasis. However, large clinical and RNA data are lacking to further confirm the exact role of these RNAs in tumors. This study aimed to ascertain differential RNA expression between colon cancer and normal colon tissues. Materials and Methods: RNA sequencing and clinical data of patients with colon cancer were procured from The Cancer Genome Atlas database; differentially expressed long non-coding RNA, differentially expressed messenger RNAs, and differentially expressed microRNAs were achieved using the limma package in edgeR to generate competing endogenous RNAs networks. Then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were conducted with ggplot2 package, the Kaplan-Meier survival method was used to predict survival in patients with colon cancer. Results: In total, 1174 differentially expressed long non-coding RNAs, 2068 differentially expressed messenger RNAs, and 239 differentially expressed microRNAs were generated between 480 colon cancer and 41 normal colon tissue samples. Three competing endogenous RNA networks were established. Gene Ontology analysis indicated that the genes of the up-regulated microRNA network were involved in negative regulation of transcription, DNA-template, and those of down-regulated microRNA network were involved in transforming growth factor β receptor signaling pathways, response to hypoxia, cell migration, while Kyoto Encyclopedia of Genes and Genomes analyses of these networks turned out to be negative. Three long non-coding RNAs (AP004609.1, ARHGEF26-AS1, and LINC00491), 3 microRNAs (miRNA-141, miRNA-216a, and miRNA-193b) and 3 RNAs (ULBP2, PHLPP2, and TPM2) were detected to be associated with prognosis by the Kaplan-Meier survival analysis. Additionally, univariate and multivariate Cox regression analyses showed that the microRNA-216a of the competing endogenous RNA might be an independent prognostic factor in colon cancer. Conclusions: This study constructed the non-coding RNA-related competing endogenous RNA networks in colon cancer and sheds lights on underlying biomarkers for colon cancer cohorts.


Gene ◽  
2019 ◽  
Vol 697 ◽  
pp. 184-193 ◽  
Author(s):  
Yan-Hui Shi ◽  
Xin-Wei He ◽  
Feng-Di Liu ◽  
Yi-Sheng Liu ◽  
Yue Hu ◽  
...  

Oncogenesis ◽  
2019 ◽  
Vol 8 (11) ◽  
Author(s):  
Wenjie Xia ◽  
Qixing Mao ◽  
Bing Chen ◽  
Lin Wang ◽  
Weidong Ma ◽  
...  

Abstract The proposed competing endogenous RNA (ceRNA) mechanism suggested that diverse RNA species, including protein-coding messenger RNAs and non-coding RNAs such as long non-coding RNAs, pseudogenes and circular RNAs could communicate with each other by competing for binding to shared microRNAs. The ceRNA network (ceRNET) is involved in tumor progression and has become a hot research topic in recent years. To date, more attention has been paid to the role of non-coding RNAs in ceRNA crosstalk. However, coding transcripts are more abundant and powerful than non-coding RNAs and make up the majority of miRNA targets. In this study, we constructed a mRNA-mRNA related ceRNET of lung adenocarcinoma (LUAD) and identified the highlighted TWIST1-centered ceRNET, which recruits SLC12A5 and ZFHX4 as its ceRNAs. We found that TWIST1/SLC12A5/ZFHX4 are all upregulated in LUAD and are associated with poorer prognosis. SLC12A5 and ZFHX4 facilitated proliferation, migration, and invasion in vivo and in vitro, and their effects were reversed by miR-194–3p and miR-514a-3p, respectively. We further verified that SLC12A5 and ZFHX4 affected the function of TWIST1 by acting as ceRNAs. In summary, we constructed a mRNA-mRNA related ceRNET for LUAD and highlighted the well-known oncogene TWIST1. Then we verified that SLC12A5 and ZFHX4 exert their oncogenic function by regulating TWIST1 expression through a ceRNA mechanism.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Yifang Liao ◽  
Ping Li ◽  
Yanxia Wang ◽  
Hong Chen ◽  
Shangwei Ning ◽  
...  

Abstract Background Asthma is a heterogeneous disease characterized by chronic airway inflammation. Long non-coding RNA can act as competing endogenous RNA to mRNA, and play significant role in many diseases. However, there is little known about the profiles of long non-coding RNA and the long non-coding RNA related competing endogenous RNA network in asthma. In current study, we aimed to explore the long non-coding RNA-microRNA-mRNA competing endogenous RNA network in asthma and their potential implications for therapy and prognosis. Methods Asthma-related gene expression profiles were downloaded from the Gene Expression Omnibus database, re-annotated with these genes and identified for asthma-associated differentially expressed mRNAs and long non-coding RNAs. The long non-coding RNA-miRNA interaction data and mRNA-miRNA interaction data were downloaded using the starBase database to construct a long non-coding RNA-miRNA-mRNA global competing endogenous RNA network and extract asthma-related differentially expressed competing endogenous RNA network. Finally, functional enrichment analysis and drug repositioning of asthma-associated differentially expressed competing endogenous RNA networks were performed to further identify key long non-coding RNAs and potential therapeutics associated with asthma. Results This study constructed an asthma-associated competing endogenous RNA network, determined 5 key long non-coding RNAs (MALAT1, MIR17HG, CASC2, MAGI2-AS3, DAPK1-IT1) and identified 8 potential new drugs (Tamoxifen, Ruxolitinib, Tretinoin, Quercetin, Dasatinib, Levocarnitine, Niflumic Acid, Glyburide). Conclusions The results suggested that long non-coding RNA played an important role in asthma, and these novel long non-coding RNAs could be potential therapeutic target and prognostic biomarkers. At the same time, potential new drugs for asthma treatment have been discovered through drug repositioning techniques, providing a new direction for the treatment of asthma.


2020 ◽  
Vol 10 ◽  
Author(s):  
Liang Gao ◽  
Kunwei Shen ◽  
Ni Yin ◽  
Min Jiang

BackgroundTamoxifen and fulvestrant, both approved for endocrine therapy, have remarkably increased the prognosis of hormone receptor-positive breast cancer patients. However, acquired resistance to endocrine therapy greatly reduces its clinical efficacy. Accumulating evidence suggests a pivotal role of non-coding RNAs (ncRNAs) in breast cancer endocrine resistance, but the specific functions of ncRNAs in tamoxifen and fulvestrant resistance remain largely unknown.MethodsMicroarray analysis was performed for endocrine therapy sensitive (MCF-7), tamoxifen-resistant (LCC2), and dual tamoxifen and fulvestrant-resistant (LCC9) breast cancer cells. Gene ontology and pathway analysis were conducted for functional prediction of the unannotated differentially expressed ncRNAs. Competing endogenous RNA regulatory networks were constructed.ResultsWe discovered a total of 3,129 long non-coding RNAs (lncRNAs), 13,556 circular RNAs (circRNAs), 132 microRNAs, and 3358 mRNAs that were significantly differentially expressed. We constructed co-expression networks for lncRNA-mRNA, circRNA-mRNA, and microRNA-mRNA. In addition, we established lncRNA-microRNA-mRNA and circRNA-microRNA-mRNA regulatory networks to depict ncRNA crosstalk and transcriptomic regulation of endocrine resistance.ConclusionsOur study delineates a comprehensive profiling of ncRNAs in tamoxifen and fulvestrant resistant breast cancer cells, which enriches our understanding of endocrine resistance and sheds new light on identifying novel endocrine resistance biomarkers and potential therapeutic targets to overcome endocrine resistance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cheng Xiao ◽  
Tian Wei ◽  
Li Xiang Liu ◽  
Jian Qiang Liu ◽  
Chun Xin Wang ◽  
...  

Many local sheep breeds in China have poor meat quality. Increasing intramuscular fat (IMF) content can significantly improve the quality of mutton. However, the molecular mechanisms of intramuscular adipocyte formation and differentiation remain unclear. This study compared differences between preadipocytes and mature adipocytes by whole-transcriptome sequencing and constructed systematically regulatory networks according to the relationship predicted among the differentially expressed RNAs (DERs). Sequencing results showed that in this process, there were 1,196, 754, 100, and 17 differentially expressed messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), respectively. Gene Ontology analysis showed that most DERs enriched in Cell Part, Cellular Process, Biological Regulation, and Binding terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the DERs primarily focused on Focal adhesion, phosphoinositide 3-kinase (PI3K)-Akt, mitogen-activated protein kinase (MAPK), peroxisome proliferator-activated receptor (PPAR) signaling pathways. Forty (40) DERs were randomly selected from the core regulatory network to verify the accuracy of the sequence data. The results of qPCR showed that the DER expression trend was consistent with sequence data. Four novel promising candidate miRNAs (miR-336, miR-422, miR-578, and miR-722) played crucial roles in adipocyte differentiation, and they also participated in multiple and important regulatory networks. We verified the expression pattern of the miRNAs and related pathways’ members at five time points in the adipocyte differentiation process (0, 2, 4, 6, 8, 10 days) by qPCR, including miR-336/ACSL4/LncRNA-MSTRG71379/circRNA0002331, miR-422/FOXO4/LncRNA-MSTRG54995/circRNA0000520, miR-578/IGF1/LncRNA-MSTRG102235/circRNA0002971, and miR-722/PDK4/LncRNA-MSTRG107440/circ RNA0002909. In this study, our data provided plenty of valuable candidate DERs and regulatory networks for researching the molecular mechanisms of sheep adipocyte differentiation and will assist studies in improving the IMF.


2018 ◽  
Vol 19 (10) ◽  
pp. 3083 ◽  
Author(s):  
Quanwei Zhang ◽  
Qi Wang ◽  
Yong Zhang ◽  
Shuru Cheng ◽  
Junjie Hu ◽  
...  

Testis development is a vital and tightly regulated process in mammals. Understanding the biological mechanisms underlying testis development will benefit the animal reproduction industry. Expression changes in microRNA and messenger RNA in response to dynamic regulation effects have been associated with this process. However, very little is known about the roles of these molecules in yak development. Using whole-genome small RNA and messenger RNA sequencing, we performed a comprehensive analysis of the microRNA–messenger RNA interaction network expression in the testicles of Tianzhu white yaks during three developmental stages. Using Short Time-series Expression Miner analysis we identified 589 differentially expressed microRNAs (DERs) and 3383 differentially expressed messenger RNAs (DEGs) in the three age groups. A total of 93 unique DEGs are primarily involved in reproduction and testis development. Subsequently, four integration networks were constructed according to the DEGs and DERs in three biological processes. Nineteen DEGs were potentially regulated by 60 DERs, of which miR-574 and target gene AURKA played a crucial role in yak testis development and reproduction. The results of this study provide a basis for further exploration of the microRNA–messenger RNA interactions in testis development and reproduction and aid in uncovering the molecular mechanisms of spermatogenesis in male mammals.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shuxia Zhang ◽  
Ting Zhu ◽  
Qiaoyu Li ◽  
Guibo Sun ◽  
Xiaobo Sun

Ischemic stroke (IS) is a disease that is characterized by high mortality and disability. Recent studies have shown that LncRNA-mediated competing endogenous RNA (ceRNA) networks play roles in the occurrence and development of cerebral I/R injury by regulating different signaling pathways. However, no systematic analysis of ceRNA mechanisms in IS has been reported. In this review, we discuss molecular mechanisms of LncRNA-mediated ceRNA networks under I/R injury. The expression levels of LncRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs) and their effects in four major cell types of the neurovascular unit (NVU) are also involved. We further summarize studies of LncRNAs as biomarkers and therapeutic targets. Finally, we analyze the advantages and limitations of using LncRNAs as therapeutics for IS.


2017 ◽  
Author(s):  
Mohammad M. Tarek

AbstractCompeting endogenous RNA networks have been considered to be important regulators of genetic data expression. Circular RNAs and microRNAs interact to form a circular sponge that have been shown to regulate messenger RNAs and hence regulating gene expression. The kinetics by which these non-coding RNAs interact together affecting gene expression are crucial to understand the mechanism of their regulatory function. Herein, we developed AFCMEasyModel as a user-friendly shiny app that enables users to modify regulation parameters of a competing endogenous RNA network based on interaction between circular RNAs and microRNAs in the simulation environment to form a sponge complex. The App provides the source-code for more customized models and allow users to download simulation plots for supplementation of their publications.The App was made available for public-access at: https://mohammadtarek.shinyapps.io/afcmeasymodel/


Sign in / Sign up

Export Citation Format

Share Document