scholarly journals Interfacial Shear at the Atomic Scale

Author(s):  
Martin Rejhon ◽  
Francesco Lavini ◽  
Ali Khosravi ◽  
Mykhailo Shestopalov ◽  
Jan Kunc ◽  
...  

Abstract Understanding the interfacial properties between an atomic layer and its substrate is of key interest at both the fundamental and technological level. From Fermi level pinning to strain engineering and superlubricity, the interaction between a single atomic layer and its substrate governs electronic, mechanical, and chemical properties of the layer-substrate system. Here, we measure the hardly accessible interfacial transverse shear modulus of an atomic layer on a substrate. We show that this key interfacial property is critically controlled by the chemistry, order, and structure of the atomic layer-substrate interface. In particular, the experiments demonstrate that the interfacial shear modulus of epitaxial graphene on SiC increases for bilayer films compared to monolayer films, and augments when hydrogen is intercalated between graphene and SiC. The increase in shear modulus for two layers compared to one layer is explained in terms of layer-layer and layer-substrate stacking order, whereas the increase with H-intercalation is correlated with the pinning induced by the H-atoms at the interface. Importantly, we also demonstrate that this modulus is a pivotal measurable property to control and predict sliding friction in supported two-dimensional materials. Indeed, we observe an inverse relationship between friction and interfacial shear modulus, which naturally emerges from simple friction models based on a point mass driven over a periodic potential. This inverse relation originates from a decreased dissipation in presence of large shear stiffness, which reduces the energy barrier for sliding.

2021 ◽  
Author(s):  
Monu Kaushik ◽  
César Leroy ◽  
Zixuan Chen ◽  
David Gajan ◽  
Elena Willinger ◽  
...  

We report the atomic-scale structure of alumina layers obtained by atomic layer deposition (ALD) of trimethylaluminium onto partially dehydroxylated silica. Such a detailed insight into the atomic structure of the species formed with increasing Al content was gained using a variety of one- and two-dimensional solid-state nuclear magnetic resonance (NMR) experiments involving <sup>27</sup>Al, <sup>1</sup>H and <sup>29</sup>Si nuclei. <sup>15</sup>N dynamic nuclear polarization surface-enhanced NMR spectroscopy (<sup>15</sup>N DNP SENS) and infrared spectroscopy using <sup>15</sup>N-labelled pyridine as a probe molecule reveal that aluminium oxide layers on amorphous silica contain both strong Bronsted and strong Lewis acid sites, whereby the relative abundance and nature of these sites, and therefore the acidity of the surface, evolve with increasing thickness of the alumina film. <br>


2021 ◽  
Author(s):  
Monu Kaushik ◽  
César Leroy ◽  
Zixuan Chen ◽  
David Gajan ◽  
Elena Willinger ◽  
...  

We report the atomic-scale structure of alumina layers obtained by atomic layer deposition (ALD) of trimethylaluminium onto partially dehydroxylated silica. Such a detailed insight into the atomic structure of the species formed with increasing Al content was gained using a variety of one- and two-dimensional solid-state nuclear magnetic resonance (NMR) experiments involving <sup>27</sup>Al, <sup>1</sup>H and <sup>29</sup>Si nuclei. <sup>15</sup>N dynamic nuclear polarization surface-enhanced NMR spectroscopy (<sup>15</sup>N DNP SENS) and infrared spectroscopy using <sup>15</sup>N-labelled pyridine as a probe molecule reveal that aluminium oxide layers on amorphous silica contain both strong Bronsted and strong Lewis acid sites, whereby the relative abundance and nature of these sites, and therefore the acidity of the surface, evolve with increasing thickness of the alumina film. <br>


ChemPhysChem ◽  
2021 ◽  
Author(s):  
Dan Xu ◽  
Junqing Yin ◽  
Ya Gao ◽  
Di Zhu ◽  
Shuyuan Wang

Nanoscale ◽  
2017 ◽  
Vol 9 (32) ◽  
pp. 11410-11417 ◽  
Author(s):  
D. Zhang ◽  
M. J. Quayle ◽  
G. Petersson ◽  
J. R. van Ommen ◽  
S. Folestad

Few atomic surface layers via atomic layer deposition under near ambient conditions significantly altered dissolution and dispersion of pharmaceutical particles.


1995 ◽  
Vol 380 ◽  
Author(s):  
Craig T. Salling

ABSTRACTThe ability to create atomic-scale structures with the scanning tunneling microscope (STM) plays an important role in the development of a future nanoscale technology. I briefly review the various modes of STM-based fabrication and atomic manipulation. I focus on using a UHV-STM to directly pattern the Si(001) surface by atomic manipulation at room temperature. By carefully adjusting the tip morphology and pulse voltage, a single atomic layer can be removed from the sample surface to define features one atom deep. Segments of individual dimer rows can be removed to create structures with atomically straight edges and with lateral features as small as one dimer wide. Trenches ∼3 nm wide and 2–3 atomic layers deep can be created with less stringent control of patterning parameters. Direct patterning provides a straightforward route to the fabrication of nanoscale test structures under UHV conditions of cleanliness.


1999 ◽  
Vol 5 (S2) ◽  
pp. 170-171
Author(s):  
Guofu Zhou ◽  
Yoshizo Takai ◽  
Ryuichi Shimizu

Owing to its unique and outstanding physical-chemical properties, diamond is considered to be one of the most important potential materials for applications such as in mechanical, optical, thermal, and electronic devices. Among them, the most attractive application of diamond would be a semiconductor for high temperature and high power electronic devices. To realize such novel devices, a high quality of defect-free single-crystal diamond film is required. Recently, continuous diamond films are found to be able to grow on Pt(lll) substrate. Since the diamond film synthesized on Pt shows a high degree of epitaxy, this approach has drawn the attention of reseafchers in this field and some research results have been reported. However, the heteroepitaxial mechanism is still to be elucidated; in particular, why does diamond grow heteroepitaxially on the Pt substrate and how do the atoms align in the interface between diamond and the Pt substrate? In order to solve those problems, it is very necessary to study the diamond growth mechanism on an atomic scale.


2021 ◽  
Author(s):  
Jerome W. F. Innocent ◽  
Mari Napari ◽  
Andrew L. Johnson ◽  
Thom R. Harris-Lee ◽  
Miriam Regue ◽  
...  

Here we report the development of a new scalable and transferable plasma assisted atomic layer deposition (PEALD) process for the production of uniform, conformal and pinhole free NiO with sub-nanometre control on a commercial ALD reactor.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1362
Author(s):  
Cláudio M. Lousada ◽  
Pavel A. Korzhavyi

The segregation of P and S to grain boundaries (GBs) in fcc Cu has implications in diverse physical-chemical properties of the material and this can be of particular high relevance when the material is employed in high performance applications. Here, we studied the segregation of P and S to the symmetric tilt Σ9 (22¯1¯) [110], 38.9° GB of fcc Cu. This GB is characterized by a variety of segregation sites within and near the GB plane, with considerable differences in both atomic site volume and coordination number and geometry. We found that the segregation energies of P and S vary considerably both with distance from the GB plane and sites within the GB plane. The segregation energy is significantly large at the GB plane but drops to almost zero at a distance of only ≈3.5 Å from this. Additionally, for each impurity there are considerable variations in energy (up to 0.6 eV) between segregation sites in the GB plane. These variations have origins both in differences in coordination number and atomic site volume with the effect of coordination number dominating. For sites with the same coordination number, up to a certain atomic site volume, a larger atomic site volume leads to a stronger segregation. After that limit in volume has been reached, a larger volume leads to weaker segregation. The fact that the segregation energy varies with such magnitude within the Σ9 GB plane may have implications in the accumulation of these impurities at these GBs in the material. Because of this, atomic-scale variations of concentration of P and S are expected to occur at the Σ9 GB center and in other GBs with similar features.


Author(s):  
Chris Y. Yuan ◽  
David A. Dornfeld

Atomic layer deposition (ALD) is a promising nanotechnology for wide applications in microelectronics manufacturing due to its ability to control layer growth at atomic scale. Sustainability of ALD technology needs to be quantitatively investigated in this early development stage to improve its economic and environmental performance. In this paper, we present an integrated sustainability analysis of ALD technology through material and energy flow analyses. The study is performed on the ALD of Al2O3 high-κ dielectric film through trimethylaluminum and water binary reactions. The precursor utilizations, methane emissions, and nanowaste generations from the ALD process are all quantitatively studied. Energy flow analysis demonstrates that the ALD process energy consumption is mainly determined by the ALD cycle time rather than the process temperature. Scale-up performance of the ALD technology is also studied for both emission generations and energy consumptions. Strategies and methods for improving the sustainability performance of the ALD technology are suggested based on the analysis.


Sign in / Sign up

Export Citation Format

Share Document