Sorption of Uranium (VI) From Aqueous Solution Using Nanomagnetite Particles; Singly and Coated With Humic Acid

Author(s):  
Ismail Mohamed Ahmed ◽  
Aly A. Helal ◽  
Rasha Gamal ◽  
Salah aboEinien ◽  
Abdullah A. Helal

Abstract Magnetite nanoparticles (Fe3O4) and humic acid coated magnetite nanoparticles (Fe3O4/HA) were investigated for the removal of U(VI) from aqueous solution. Batch sorption experiments were studied as a function contact time, adsorbent mass, U(VI) concentration and pH. The sorption kinetic data follow the pseudo-second order while the isotherms are found to obey Langmuir model with maximum capacity (Qmax) of 230, 196 mg/g for Fe3O4 and Fe3O4/HA, respectively. The study reveals that humic acid decreases the sorption capacity due to the formation of a polyanionic organic coating and thus altering the surface properties of the particles and reduces the magnetite aggregation and stabilizes the magnetite suspension.

Author(s):  
M. Smiri ◽  
F. Guey ◽  
H. Chemingui ◽  
A. B. Dekhil ◽  
S. Elarbaoui ◽  
...  

Synthesis, characterization and application of iron oxide nanoparticles have received much attention in recent years due to their interesting chemical and physics properties. Magnetite (Fe3O4) nanoparticles were synthesed by chemical co-precipitation and characterized using X ray diffraction (XDR), Fourier transmission spectroscopy (FT-IR), dynamic light scattering and (DLS). Fe3O4 nanoparticles were successfully removed humic acid (HA) from water. The influence of pH, contact time, adsorbent nanoparticle doses and HA concentrations were analyzed. Maximum HA removal occurred at pH 6 (89.63%), 40 mg.L-1 of Magnetite (88.8%), 0.03g of HA (96.64%) and contact time of 20 min (94.37%). Sorption data fit pseudo-second order kinetics, indicated a chemical adsorption process. The Langmuir, Freundlich and Temkin adsorption isotherm models were applied to describe equilibrium data. Adsorption of HA on magnetite nanoparticles was well described by Temkin model. The maximum adsorption capacity was 128.23 mg.g-1. Fe3O4 nanoparticles were promising potential adsorbents for HA removal from water.


2021 ◽  
Vol 10 (2) ◽  
pp. 43-48
Author(s):  
Dang Le Hai ◽  
Trang Luu Thu ◽  
Hoang Tran Vinh ◽  
Doanh Vu Viet ◽  
Thu Le Dieu ◽  
...  

Core shell magnetite nanoparticles (Fe3O4@C) as adsorbent for lead ions from aqueous solution were synthesized. The characteristics of the modified materials were analysed. It could also be shown that the adsorption isotherms were well described by the Langmuir model. The kinetic of the adsorption process was found to follow the pseudo-second-order model expression. Thermodynamic studies indicated that the adsorption process was feasible, spontaneous and endothermic.


2014 ◽  
Vol 1051 ◽  
pp. 583-587
Author(s):  
Ling Tao ◽  
Xiao Wei Song ◽  
Jian Li Yuan ◽  
Jun Ren ◽  
Yan Zhuo Zhang

Adsorption of Cr6+ onto purified attapulgite was investigated with respect to temperature, initial concentration and contact time. The kinetics data related to the adsorption of chromium from aqueous solutions are in good agreement with the pseudo-second order equation in ranges of initial concentration of 20~200 mg/L, and temperature of 298~328K. The thermodynamic experiment results show that the equilibrium adsorption isotherm was closely fitted with the Langmuir model.


Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 890 ◽  
Author(s):  
Gabriela Kamińska ◽  
Mariusz Dudziak ◽  
Edyta Kudlek ◽  
Jolanta Bohdziewicz

Grainy Hal-CNT composites were prepared from powder halloysite nanoclay (Hal) and carbon nanotubes (CNTs). The effect of the amount and type of CNTs, as well as calcination temperature on morphology and properties of Hal-CNT composites and their adsorption capacity of anthracene (ANT), were studied. The surface topography of granules was heterogenous, with cracks and channels created during granulation of powder clay and CNTs. In FTIR, spectra were exhibited only in the bands arising from halloysite, due to its dominance in the granules. The increase in the heating temperature to 550 °C resulted in mesoporosity/macroporosity of the granules, the lowest specific surface area (SSA) and poorest adsorption potential. Overall, SSA of all Hal-CNT composites were higher than raw Hal, and by itself, heated halloysite. The larger amount of CNTs enhanced adsorption kinetics due to the more external adsorption sites. The equilibrium was established with the contact time of approximately 30 min for the sample Hal-SWCNT 85:15, while the samples with loading 96:4, it was 60–90 min. Adsorption isotherms for ANT showed L1 type, which is representative for the sorbents with limited adsorption capacity. The Langmuir model described the adsorption process, suggesting a monolayer covering. The sample Hal-SWCNT 85:15 exhibited the highest adsorption capacity of ANT, due to its highest SSA and microporous character.


2020 ◽  
Vol 3 (6) ◽  
pp. 857-870
Author(s):  
Shagufta Zafar ◽  
Muhammad Imran Khan ◽  
Mushtaq Hussain Lashari ◽  
Majeda Khraisheh ◽  
Fares Almomani ◽  
...  

AbstractThe present study investigates the removal of copper ions (Cu (II)) from aqueous solution using chemically treated rice husk (TRH). The chemical treatment was carried out using NaOH solution and the effect of contact time (tc), adsorbent dosage (Dad), initial Cu (II) concentration ([Cu]i), and temperature (T) on the percentage removals of Cu (II) (%RCu) were investigated. Different analytical techniques (FTIR, SEM, and EDX) were used to confirm the adsorption (ads) of Cu (II) onto the TRH. The ads kinetics was tested against pseudo-first-order (PFO) and pseudo-second-order (PSO) models as well as Langmuir and Freundlich isotherms. Treating RH with NaOH altered the surface and functional groups, and on the surface of RH, the ionic ligands with high electro-attraction to Cu increased and thus improved the removal efficiency. The %RCu decreased by increasing the [Cu]i and increased by increasing the ct, Dad, and T. Up to 97% Cu removal was achieved in ct of 30 min using Dad of 0.3 g [Cu]i of 25 mg L−1 and T = 280 K. The ads of Cu on TRH is endothermic, spontaneous, follows Langmuir isotherms, and exhibited a PSO kinetics. Moreover, the TRH was successfully regenerated and used for further adsorption cycles using 1 M HNO3.


2012 ◽  
Vol 573-574 ◽  
pp. 150-154
Author(s):  
Yun Bo Zang ◽  
Nai Ying Wu

In this study, removal of copper ions from aqueous solutions by synthetic Mg-Al-HTlc was investigated as a function of contact time, EDTA and addition sequences at room temperature. It is found that HTlc could reduced copper ions concentration effectively. The kinetics closely fit pseudo-second order kinetics with necessary time 9 h to reach equilibrium. The sorption process followed langmuir model. The maximum sorption capacity calculated was found to be 39.4 mg/g. The presence of EDTA and addition sequences could affect sorption of Cu(II) onto HTlc.


2017 ◽  
Vol 123 ◽  
pp. 353-360 ◽  
Author(s):  
Mamun Rashid ◽  
Nathaniel T. Price ◽  
Miguel Ángel Gracia Pinilla ◽  
Kevin E. O'Shea

2017 ◽  
Vol 105 (6) ◽  
Author(s):  
Liu Peng ◽  
Wu Hanyu ◽  
Yuan Ni ◽  
Yin Zhuoxin ◽  
Pan Duoqiang ◽  
...  

Abstractβ-Zeolite-EDA was modified with ethylenediamine (EDA) after synthesized. The synthesized material was characterized and used for removal of Th(IV) from aqueous solutions. The influences of pH, ionic strength, contact time, temperature and humic acid (HA) on Th(IV) sorption onto synthesized β-zeolite-EDA was studied by batch technique. The dynamic process showed that the sorption of Th(IV) onto β-zeolite-EDA matched the pseudo-second-order kinetics model. The sorption of Th(IV) on β-zeolite-EDA was significantly dependent on pH values, the sorption percentage increased markedly at pH 3.5–4.5, and then maintained a steady state as pH values increased. Through simulating the sorption isotherms by Langmuir, Freundlich and Dubini–Radushkevich (D–R) models, it could be seen respectively that the sorption pattern of Th(IV) on β-zeolite-EDA was mainly controlled by surface complexation, and that the sorption processes was endothermic and spontaneous. The presence of HA increased Th(IV) sorption on β-zeolite-EDA.


2016 ◽  
Vol 17 (1) ◽  
pp. 32-38 ◽  
Author(s):  
Tianli Han ◽  
Xiaoman Zhang ◽  
Xiangqian Fu ◽  
Jinyun Liu

Chitosan nanoparticle (CS NP)-modified MnO2 nanoflakes were presented as a novel adsorbent for fast adsorption of Pb(II) from aqueous solution. Loading dense CS NPs onto mono-dispersive flower-like MnO2 nanostructures reduces the overlap of CS during adsorption, and thus improves the contact of functional adsorption sites on the surface of MnO2 nanoflakes with heavy metal ions. The results show that the removal efficiency of the nanoadsorbents reaches up to 93% in 3 min for Pb(II). In addition, the maximum adsorption capacity, effects of adsorbent dosage and pH value, and the reusability were investigated. The kinetic process and adsorption isotherm fit well with the pseudo-second-order model and Langmuir model, respectively. These findings provide a potential strategy to address the overlap issue of some common nanoadsorbents.


2020 ◽  
Vol 9 (3) ◽  
pp. 197-206
Author(s):  
Thaharah Ramadhani ◽  
Faisal Abdullah ◽  
Indra Indra ◽  
Abrar Muslim ◽  
Suhendrayatna Suhendrayatna ◽  
...  

The use of a low-cost biosorbent prepared from Ipomoea pes-caprae stem for the adsorption of Cd(II) ions from aqueous solution at different contact times, biosorbent sizes, pH values, and initial Cd(II) ions concentration solution was investigated. The biosorbent was analyzed using Fourier-transform infrared spectroscopy (FT-IR) to find important IR-active functional groups. A scanning electron microscope (SEM) was used to examine the biosorbent morphology. The experimental results showed the highest Cd(II) ions adsorption was 29.513 mg/g  under an optimal condition as initial Cd(II) ions concentration of 662.77 mg/L, 1 g dose, 80-min contact time, pH 5, 75 rpm of stirring speed, 1 atm, and 30 oC. Cd(II) ions' adsorption kinetics obeys the linearized pseudo-second-order kinetics (R2 = 0.996), and the adsorption capacity is based on the optimal condition, and the rate attained was 44.444 mg/g and 0.097 g/mg. Min, respectively. Besides, the adsorption isotherms were very well fitted by the linearized Langmuir isotherm model, and the monolayer adsorption capacity and pore volume determined was 30.121 mg/g and 0.129 L/mg, respectively. These results indicated the chemisorption nature


Sign in / Sign up

Export Citation Format

Share Document