Reducing the metabolic energy of walking and running using an unpowered hip exoskeleton

Author(s):  
Tiancheng Zhou ◽  
Caihua Xiong ◽  
Juanjuan Zhang ◽  
Di Hu ◽  
Wenbin Chen ◽  
...  

Abstract Background: Walking and running are the most common means of locomotion in human daily life. People have made advances in developing separate exoskeletons to reduce metabolic rate of walking or running. However, the combined requirements of overcoming fundamental biomechanical differences between the two gaits and minimizing the metabolic penalty of exoskeleton mass make it challenging to develop an exoskeleton that can reduce the metabolic energy for both gaits. Here we show that the metabolic energy of both walking and running can be reduced by regulating the metabolic energy of hip flexion during the common energy consumption period of the two gaits using an unpowered hip exoskeleton. Methods: We analyzed metabolic rates, muscle activities and spatio-temporal parameters from 9 healthy subjects (mean s.t.d; 24.9 ± 3.7 years, 66.9 ± 8.7 kg, 1.76 ± 0.05 m) walking on a treadmill at the speed of 1.5 m×s -1 and running at speed of 2.5 m×s -1 with different spring stiffnesses. After obtaining the optimal spring stiffness, we recruited the participants to walk and run with the optimal stiffness spring at different speeds to demonstrate the generality of the proposed approach. Results: We found that the optimal exoskeleton spring stiffnesses for walking and running were 140 N×m Rad -1 and 210 N×m Rad -1 respectively, corresponding to 8.2% ± 1.5% (mean ± s.e.m, two-sided paired t-test: p < 0.01) and 9.1% ± 1.3% ( p < 0.01) metabolic reductions compared to walking/running without exoskeleton. The metabolic energy within tested speed range can be reduced with the assistance except for low speed walking (1.0 m s -1 ). Participants showed different changes in muscle activities with the assistance of proposed exoskeleton. Conclusions: This paper first demonstrated that metabolic cost of walking and running can be reduced using an unpowered hip exoskeleton to regulate metabolic energy of hip flexion. The design method based on analyzing the common energy consumption characteristics between gaits may inspire future exoskeletons that assist multiple gaits. The results of different changes in muscle activities provided a new insight of human response to the same assistive principle in different gaits (walking and running).

Author(s):  
Tiancheng Zhou ◽  
Caihua Xiong ◽  
Juanjuan Zhang ◽  
Di Hu ◽  
Wenbin Chen ◽  
...  

Abstract Background Walking and running are the most common means of locomotion in human daily life. People have made advances in developing separate exoskeletons to reduce the metabolic rate of walking or running. However, the combined requirements of overcoming the fundamental biomechanical differences between the two gaits and minimizing the metabolic penalty of the exoskeleton mass make it challenging to develop an exoskeleton that can reduce the metabolic energy during both gaits. Here we show that the metabolic energy of both walking and running can be reduced by regulating the metabolic energy of hip flexion during the common energy consumption period of the two gaits using an unpowered hip exoskeleton. Methods We analyzed the metabolic rates, muscle activities and spatiotemporal parameters of 9 healthy subjects (mean ± s.t.d; 24.9 ± 3.7 years, 66.9 ± 8.7 kg, 1.76 ± 0.05 m) walking on a treadmill at a speed of 1.5 m s−1 and running at a speed of 2.5 m s−1 with different spring stiffnesses. After obtaining the optimal spring stiffness, we recruited the participants to walk and run with the assistance from a spring with optimal stiffness at different speeds to demonstrate the generality of the proposed approach. Results We found that the common optimal exoskeleton spring stiffness for walking and running was 83 Nm Rad−1, corresponding to 7.2% ± 1.2% (mean ± s.e.m, paired t-test p < 0.01) and 6.8% ± 1.0% (p < 0.01) metabolic reductions compared to walking and running without exoskeleton. The metabolic energy within the tested speed range can be reduced with the assistance except for low-speed walking (1.0 m s−1). Participants showed different changes in muscle activities with the assistance of the proposed exoskeleton. Conclusions This paper first demonstrates that the metabolic cost of walking and running can be reduced using an unpowered hip exoskeleton to regulate the metabolic energy of hip flexion. The design method based on analyzing the common energy consumption characteristics between gaits may inspire future exoskeletons that assist multiple gaits. The results of different changes in muscle activities provide new insight into human response to the same assistive principle for different gaits (walking and running).


2019 ◽  
Author(s):  
Hwang-Jae Lee ◽  
Su Hyun Lee ◽  
Won Hyuk Chang ◽  
Keehong Seo ◽  
Jusuk Lee ◽  
...  

Abstract Background: Wearable types of gait-assist robots have been developed to provide additional advantages such as being easily transportable, producing a more natural gait pattern, and being simple to control. The purpose of this study was to investigate the effect of intensive gait training with a newly developed wearable hip-assist robot on gait function and cardiopulmonary metabolic energy efficiency in community-dwelling elderly adults. Methods: Total of 27 community-dwelling elderly adults with age-related problems completed in this intervention study (15 experimental group and 12 control group) . The experimental participants received an intensive gait training program with a total of 10 sessions involving five sessions of treadmill and five sessions of over-ground gait training with the wearable hip-assist robot. The control group received gait training without a wearable-hip assist robot. The primary outcomes were gait functions (spatio-temporal parameters and muscle effort). The secondary outcome was cardiopulmonary metabolic energy consumption. Results: Compared to the control group, the experimental group had significantly greater improvements after intervention in spatio-temporal parameters (gait speed, cadence, and stride length) and reduced muscle efforts (trunk and lower extremity) with gait (p < 0.05). In addition, the reduction in oxygen consumption (ml/min/kg) was about 16.31% in the experimental group after intervention. Furthermore, the reduction in the aerobic energy expenditure measurement (Kcal/min) was about 17.36% in the experimental group after intensive gait training with wearable hip-assist robot. All cardiopulmonary metabolic energy consumption parameters in the experimental group were reduced significantly more than in the control group (p < 0.01). Conclusion: The intensive gait training with a wearable hip-assist robot was effective in improving gait function and cardiopulmonary metabolic energy efficiency in community-dwelling elderly adults with age-related problems. Trial registration: NCT02843828, registration date: 07/14/2016 - retrospectively registered


1982 ◽  
Vol 97 (1) ◽  
pp. 1-21 ◽  
Author(s):  
C. R. Taylor ◽  
N. C. Heglund ◽  
G. M. Maloiy

This series of four papers investigates the link between the energetics and the mechanics of terrestrial locomotion. Two experimental variables are used throughout the study: speed and body size. Mass-specific metabolic rates of running animals can be varied by about tenfold using either variable. This first paper considers metabolic energy consumed during terrestrial locomotion. New data relating rate of oxygen consumption and speed are reported for: eight species of wild and domestic artiodactyls; seven species of carnivores; four species of primates; and one species of rodent. These are combined with previously published data to formulate a new allometric equation relating mass-specific rates of oxygen consumed (VO2/Mb) during locomotion at a constant speed to speed and body mass (based on data from 62 avian and mammalian species): VO2/Mb = 0.533 Mb-0.316.vg + 0.300 Mb-0.303 where VO2/Mb has the units ml O2 s-1 kg-1; Mb is in kg; and vg is in m s-1. This equation can be expressed in terms of mass-specific rates of energy consumption (Emetab/Mb) using the energetic equivalent of 1 ml O2 = 20.1 J because the contribution of anaerobic glycolysis was negligible: Emetab/Mb = 10.7 Mb-0.316.vg + 6.03 Mb-0.303 where Emetab/Mb has the units watts/kg. This new relationship applies equally well to bipeds and quadrupeds and differs little from the allometric equation reported 12 years ago by Taylor, Schmid-Nielsen & Raab (1970). Ninety per cent of the values calculated from this genera equation for the diverse assortment of avian and mammalian species included in this regression fall within 25% of the observed values at the middle of the speed range where measurements were made. This agreement is impressive when one considers that mass-specific rates of oxygen consumption differed by more than 1400% over this size range of animals.


1998 ◽  
Vol 201 (19) ◽  
pp. 2745-2751 ◽  
Author(s):  
T J Roberts ◽  
R Kram ◽  
P G Weyand ◽  
C R Taylor

Similarly sized bipeds and quadrupeds use nearly the same amount of metabolic energy to run, despite dramatic differences in morphology and running mechanics. It has been shown that the rate of metabolic energy use in quadrupedal runners and bipedal hoppers can be predicted from just body weight and the time available to generate force as indicated by the duration of foot-ground contact. We tested whether this link between running mechanics and energetics also applies to running bipeds. We measured rates of energy consumption and times of foot contact for humans (mean body mass 78.88 kg) and five species of birds (mean body mass range 0.13-40.1 kg). We find that most (70-90%) of the increase in metabolic rate with speed in running bipeds can be explained by changes in the time available to generate force. The rate of force generation also explains differences in metabolic rate over the size range of birds measured. However, for a given rate of force generation, birds use on average 1.7 times more metabolic energy than quadrupeds. The rate of energy consumption for a given rate of force generation for humans is intermediate between that of birds and quadrupeds. These results support the idea that the cost of muscular force production determines the energy cost of running and suggest that bipedal runners use more energy for a given rate of force production because they require a greater volume of muscle to support their body weight.


2021 ◽  
Vol 11 (6) ◽  
pp. 2851
Author(s):  
Fausto Antonio Panizzolo ◽  
Eugenio Annese ◽  
Antonio Paoli ◽  
Giuseppe Marcolin

Difficulty walking in older adults affects their independence and ability to execute daily tasks in an autonomous way, which can result in a negative effect to their health status and risk of morbidity. Very often, reduced walking speed in older adults is caused by an elevated metabolic energy cost. Passive exoskeletons have been shown to offer a promising solution for lowering the energy cost of walking, and their simplicity could favor their use in real world settings. The goal of this study was to assess if a constant and consistent low torque applied by means of a passive exoskeleton to the hip flexors during walking could provide higher and more consistent metabolic cost reduction than previously achieved. Eight older adults walked on a treadmill at a constant speed of 1.1 m/s with and without the hip assistive device. Metabolic power and spatiotemporal parameters were measured during walking in these two conditions of testing. The hip assistive device was able to apply a low torque which initiates its assistive effect at mid-stance. This reduced the metabolic cost of walking across all the participants with respect to free walking (−4.2 ± 1.9%; p = 0.002). There were no differences in the spatiotemporal parameters reported. This study strengthened the evidence that passive assistive devices can be a valuable tool to reduce metabolic cost of walking in older adults. These findings highlighted the importance of investigating torque profiles to improve the performance provided by a hip assistive device. The simplicity and usability of a system of this kind can make it a suitable candidate for improving older adults’ independence.


2019 ◽  
Vol 942 (12) ◽  
pp. 22-28
Author(s):  
A.V. Materuhin ◽  
V.V. Shakhov ◽  
O.D. Sokolova

Optimization of energy consumption in geosensor networks is a very important factor in ensuring stability, since geosensors used for environmental monitoring have limited possibilities for recharging batteries. The article is a concise presentation of the research results in the area of increasing the energy consumption efficiency for the process of collecting spatio-temporal data with wireless geosensor networks. It is shown that in the currently used configurations of geosensor networks there is a predominant direction of the transmitted traffic, which leads to the fact that through the routing nodes that are close to the sinks, a much more traffic passes than through other network nodes. Thus, an imbalance of energy consumption arises in the network, which leads to a decrease in the autonomous operation time of the entire wireless geosensor networks. It is proposed to use the possible mobility of sinks as an optimization resource. A mathematical model for the analysis of the lifetime of a wireless geosensor network using mobile sinks is proposed. The model is analyzed from the point of view of optimization energy consumption by sensors. The proposed approach allows increasing the lifetime of wireless geosensor networks by optimizing the relocation of mobile sinks.


Gerontology ◽  
2021 ◽  
pp. 1-11
Author(s):  
Rebecca L. Krupenevich ◽  
Owen N. Beck ◽  
Gregory S. Sawicki ◽  
Jason R. Franz

Older adults walk slower and with a higher metabolic energy expenditure than younger adults. In this review, we explore the hypothesis that age-related declines in Achilles tendon stiffness increase the metabolic cost of walking due to less economical calf muscle contractions and increased proximal joint work. This viewpoint may motivate interventions to restore ankle muscle-tendon stiffness, improve walking mechanics, and reduce metabolic cost in older adults.


Author(s):  
Daisey Vega ◽  
Christopher J. Arellano

Abstract Background Emphasizing the active use of the arms and coordinating them with the stepping motion of the legs may promote walking recovery in patients with impaired lower limb function. Yet, most approaches use seated devices to allow coupled arm and leg movements. To provide an option during treadmill walking, we designed a rope-pulley system that physically links the arms and legs. This arm-leg pulley system was grounded to the floor and made of commercially available slotted square tubing, solid strut channels, and low-friction pulleys that allowed us to use a rope to connect the subject’s wrist to the ipsilateral foot. This set-up was based on our idea that during walking the arm could generate an assistive force during arm swing retraction and, therefore, aid in leg swing. Methods To test this idea, we compared the mechanical, muscular, and metabolic effects between normal walking and walking with the arm-leg pulley system. We measured rope and ground reaction forces, electromyographic signals of key arm and leg muscles, and rates of metabolic energy consumption while healthy, young subjects walked at 1.25 m/s on a dual-belt instrumented treadmill (n = 8). Results With our arm-leg pulley system, we found that an assistive force could be generated, reaching peak values of 7% body weight on average. Contrary to our expectation, the force mainly coincided with the propulsive phase of walking and not leg swing. Our findings suggest that subjects actively used their arms to harness the energy from the moving treadmill belt, which helped to propel the whole body via the arm-leg rope linkage. This effectively decreased the muscular and mechanical demands placed on the legs, reducing the propulsive impulse by 43% (p < 0.001), which led to a 17% net reduction in the metabolic power required for walking (p = 0.001). Conclusions These findings provide the biomechanical and energetic basis for how we might reimagine the use of the arms in gait rehabilitation, opening the opportunity to explore if such a method could help patients regain their walking ability. Trial registration: Study registered on 09/29/2018 in ClinicalTrials.gov (ID—NCT03689647).


2020 ◽  
Vol 6 (1) ◽  
pp. e000963
Author(s):  
Sheeba Davis ◽  
Aaron Fox ◽  
Jason Bonacci ◽  
Fiddy Davis

Grounded running predominantly differs from traditional aerial running by having alternating single and double stance with no flight phase. Approximately, 16% of runners in an open marathon and 33% of recreational runners in a 5 km running event adopted a grounded running technique. Grounded running typically occurs at a speed range of 2–3 m·s−1, is characterised by a larger duty factor, reduced vertical leg stiffness, lower vertical oscillation of the centre of mass (COM) and greater impact attenuation than aerial running. Grounded running typically induces an acute increase in metabolic cost, likely due to the larger duty factor. The increased duty factor may translate to a more stable locomotion. The reduced vertical oscillation of COM, attenuated impact shock, and potential for improved postural stability may make grounded running a preferred form of physical exercise in people new to running or with low loading capacities (eg, novice overweight/obese, elderly runners, rehabilitating athletes). Grounded running as a less impactful, but metabolically more challenging form, could benefit these runners to optimise their cardio-metabolic health, while at the same time minimise running-related injury risk. This review discusses the mechanical demands and energetics of grounded running along with recommendations and suggestions to implement this technique in practice.


Sign in / Sign up

Export Citation Format

Share Document