scholarly journals Sustainable power generation for at least one month from ambient humidity using unique nanofluidic diode

Author(s):  
Yong Zhang ◽  
Tingting Yang ◽  
Kedong Shang ◽  
Fengmei Guo ◽  
Yuanyuan Shang ◽  
...  

Abstract The continuous energy-harvesting of humidity naturally present in air is attractive for the development of clean energy source for self-sustained systems. Controlling the transport of ionized mobile charge in intelligent nanoporous membrane systems is a promising strategy to convert ambient moisture energy to electricity. However, existing designs still suffer from low output power density. Moreover, these devices can only produce short-term (mostly a few seconds or a few hours, rarely for a few days) voltage and current output in the ambient environment. Effort devoted to pursuing membrane materials with new sustained energy conversion mechanism is urgently needed. Here, we design an ionic diode–type hybrid membrane with carbon nanotube/anodized aluminum asymmetric structure capable of continuously harvesting moisture energy in the ambient environment. Under electric fields, a hybrid membrane exhibits ionic current rectification properties, enabling high energy conversion efficiency in the long run due to steady-state one-way ion transport. Using a synergy between the ion rectification of nanofluidic diode and the built-in electric field induced ionization and charge transfer, one single unit produces a sustained maximum open-circuit-voltage, short-circuit-current, short-circuit-current density, output power density of 1.1V, 7.7µA, 11.3µAcm−2 and 1.3µWcm−2/277µWcm−3, respectively (93% RH, 25℃). Besides, the strong hydrogen bonds and van der Waals forces formed at the interface of asymmetric structure make the hybrid membrane robust in humid environment. In particular, the strategy of adjusting the moisture-based energy-harvesting performance based on the rectification effect of the nanofluidic diode is reported for the first time. Compared with the relevant existing devices, those elaborated by the present work show the longest service life and can generate continuous voltage and current for at least one month, demonstrating the feasibility of long-term power generation in any location with moisture conditions.

Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1100
Author(s):  
Young Jun Yoon ◽  
Jae Sang Lee ◽  
In Man Kang ◽  
Jung Hee Lee ◽  
Dong Seok Kim

In this work, Gallium Nitride (GaN)-based p-i-n diodes were designed using a computer aided design (TCAD) simulator for realizing a betavoltaic (BV) cell with a high output power density (Pout). The short-circuit current density (JSC) and open-circuit voltage (VOC) of the 17 keV electron-beam (e-beam)-irradiated diode were evaluated with the variations of design parameters, such as the height and doping concentration of the intrinsic GaN region (Hi-GaN and Di-GaN), which influenced the depletion width in the i-GaN region. A high Hi-GaN and a low Di-GaN improved the Pout because of the enhancement of absorption and conversion efficiency. The device with the Hi-GaN of 700 nm and Di-GaN of 1 × 1016 cm−3 exhibited the highest Pout. In addition, the effects of native defects in the GaN material on the performances were investigated. While the reverse current characteristics were mainly unaffected by donor-like trap states like N vacancies, the Ga vacancies-induced acceptor-like traps significantly decreased the JSC and VOC due to an increase in recombination rate. As a result, the device with a high acceptor-like trap density dramatically degenerated the Pout. Therefore, growth of the high quality i-GaN with low acceptor-like traps is important for an enhanced Pout in BV cell.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 366
Author(s):  
Yang Xia ◽  
Yun Tian ◽  
Lanbin Zhang ◽  
Zhihao Ma ◽  
Huliang Dai ◽  
...  

We present an optimized flutter-driven triboelectric nanogenerator (TENG) for wind energy harvesting. The vibration and power generation characteristics of this TENG are investigated in detail, and a low cut-in wind speed of 3.4 m/s is achieved. It is found that the air speed, the thickness and length of the membrane, and the distance between the electrode plates mainly determine the PTFE membrane’s vibration behavior and the performance of TENG. With the optimized value of the thickness and length of the membrane and the distance of the electrode plates, the peak open-circuit voltage and output power of TENG reach 297 V and 0.46 mW at a wind speed of 10 m/s. The energy generated by TENG can directly light up dozens of LEDs and keep a digital watch running continuously by charging a capacitor of 100 μF at a wind speed of 8 m/s.


2019 ◽  
Vol 7 (33) ◽  
pp. 10289-10296 ◽  
Author(s):  
Wayesh Qarony ◽  
Mohammad I. Hossain ◽  
Asman Tamang ◽  
Vladislav Jovanov ◽  
Alberto Salleo ◽  
...  

The short circuit current and energy conversion efficiency of solar cells based on semiconductor materials with low diffusion lengths like organics and amorphous silicon can be increased by a 3D device architecture.


2020 ◽  
Vol 8 (45) ◽  
pp. 23894-23905
Author(s):  
Hwa Sook Ryu ◽  
Hyun Gyeong Lee ◽  
Sang-Chul Shin ◽  
Jooho Park ◽  
Sang Hyeon Kim ◽  
...  

Terminal alkyl substituents in IDIC nonfullerene acceptors improve light absorption, crystalline packing and charge mobility in films.


2012 ◽  
Vol 51 (10S) ◽  
pp. 10NF08 ◽  
Author(s):  
Takahiro Kato ◽  
Takuma Miyake ◽  
Daisuke Tashima ◽  
Tatsuya Sakoda ◽  
Masahisa Otsubo ◽  
...  

2005 ◽  
Vol 12 (03) ◽  
pp. 343-350 ◽  
Author(s):  
M. RUSOP ◽  
T. SOGA ◽  
T. JIMBO

The successful deposition of boron ( B )-doped p-type ( p-C:B ) and phosphorous ( P )-doped n-type ( n-C:P ) carbon ( C ) films, and fabrication of p-C:B on silicon ( Si ) substrate ( p-C:B/n-Si ) and n-C:P/p-Si cells by the technique of pulsed laser deposition (PLD) using graphite target is reported. The cells' performances are represented in the dark I–V rectifying curve and I–V working curve under illumination when exposed to AM 1.5 illumination condition (100 mW/cm2, 25°C). The open circuit voltage (V oc ) and short circuit current density (J sc ) for p-C:B/n-Si are observed to vary from 230–250 mV and 1.5–2.2 mA/cm2, respectively, and to vary from 215–265 mV and 7.5–10.5 mA/cm2, respectively, for n-C:P/p-Si cells. The p-C:B/n-Si cell fabricated using the target with the amount of B by 3 Bwt% shows highest energy conversion efficiency, η = 0.20%, and fill factor, FF = 45%, while, the n-C:P/p-Si cell with the amount of P by 7 Pwt% shows highest energy conversion efficiency, η = 1.14%, and fill factor, FF = 41%. The quantum efficiencies (QE) of the p-C:B/n-Si and n-C:P/p-Si cells are observed to improve with Bwt% and Pwt%, respectively. The contributions of QE are suggested to be due to photon absorption by carbon layer in the lower wavelength region (below 750 nm) and Si substrates in the higher wavelength region. The dependence of B and P content on the electrical and optical properties of the deposited films, and the photovoltaic characteristics of the respective p-C:B/n-Si and n-C:P/p-Si heterojunction photovoltaic cells, are discussed.


2019 ◽  
Vol 29 (10) ◽  
pp. 1930029 ◽  
Author(s):  
Amin Abedini ◽  
Saeed Onsorynezhad ◽  
Fengxia Wang

Frequency up-conversion has been proved to be an effective approach to increase the output power of a piezoelectric energy harvester (PEH). The proposed system can convert low-frequency vibration from ambient sources to the resonant vibration of the PEH hence can improve the output power efficiency. Frequency up-conversion technologies are introduced via impact or nonimpact magnetic forces to initiate the repeated free oscillations of the piezoelectric generator. No matter impact- or nonimpact-driven PEHs, most studies focus on either finite element simulation or experimental demonstration of PEHs electric power generations. Few, if any, study the effects of the impact-induced discontinuous dynamics on power generation efficiency. In this work, the energy harvesting performance of a piezoelectric beam upon interaction with a softer driving beam was studied. The discontinuous dynamics behind this impact-driven PEH was investigated, and strategies exploited to further improve the power efficiency of the frequency up-conversion process. Based on the linear elastic and linear mechanical-electrical constitutive laws, the lumped parameter models were built for both the driving beam and the piezoelectric driven beam. The numerical solution of the output power is obtained based on the vibration amplitude, frequency, and the electrical load. The soft beam is subjected to a sinusoidal base excitation, and the piezoelectric beam was excited via impacting with the soft driving beam. Based on the discontinuous dynamics theory, the performance of the energy harvesting of the impact-driven system was studied for period-1 and period-2 motions. Based on the stability and bifurcation analysis of periodic solutions, bifurcation diagrams of impact velocities, times, displacements and harvested power versus the frequency of the base excitation were also obtained, and compared to the power generation of a piezoelectric beam with base excitation.


2018 ◽  
Vol 924 ◽  
pp. 715-718 ◽  
Author(s):  
Ronald Green ◽  
Damian Urciuoli ◽  
Aivars J. Lelis

An investigation into the robustness of 1200-V/80-mΩ commercial trench-gate MOSFETs reveals that the critical energy for failure during short-circuit operation is reached in shorter times in comparison to similarly rated planar DMOSFETs under similar stress conditions. This critical energy for trench devices was estimated to be between 615 mJ to 660 mJ depending on the gate-drive voltage. These values are considerably smaller when compared to DMOSFETs from the same manufacturer. In comparison to planar designs, trench devices can have lower losses, and manufactured with much smaller chip size for the same device rating. As a result, higher power density, improved efficiency, lower chip costs, and higher yields for trench designs are possible, but these enhancements are offset by a reduction in short-circuit capability. The critical short-circuit time for a 600-V bus voltage is shown to be dependent on gate-drive voltage magnitude, with higher gate voltages leading to increased peak short-circuit current, higher power dissipation, and reduced short-circuit capability.


2015 ◽  
Vol 14 (01n02) ◽  
pp. 1460017
Author(s):  
Hongyu Si ◽  
Jinlu Dong ◽  
Lei Chen ◽  
Laizhi Sun ◽  
Xiaodong Zhang ◽  
...  

The resonance between piezoelectric vibrator and the vibration source is the key to maximize the ambient vibration energy harvesting by using piezoelectric generator. In this paper, the factors that influence the output power of a single piezoelectric vibrator are analyzed. The effect of geometry size (length, thickness, width of piezoelectric chip and thickness of metal shim) of a single cantilever piezoelectric vibrator to the output power is analyzed and simulated with the help of MATLAB (matrix laboratory). The curves that output power varies with geometry size are obtained when the displacement and load at the free end are constant. Then the paper points out multi-resonant frequency piezoelectric power generation, including cantilever multi-resonant frequency piezoelectric power generation and disc type multi-resonant frequency piezoelectric generation. Multi-resonant frequency of cantilever piezoelectric power generation can be realized by placing different quality mass at the free end, while disc type multi-resonant frequency piezoelectric generation can be realized through series and parallel connection of piezoelectric vibrator.


Sign in / Sign up

Export Citation Format

Share Document