scholarly journals Changes in Ciliate Communities Reveal Modification of Lake Functioning Over the Last Century

Author(s):  
Barouillet Cécilia ◽  
Valentin Vasselon ◽  
François Keck ◽  
Laurent Millet ◽  
David Etienne ◽  
...  

Abstract Ciliates are unicellular heterotrophic organisms that play a key role in the planktonic and benthic food webs of lakes, and represent a great potential as bioindicator. In this study, we used the top-bottom paleolimnological approach to compare the recent and past (i.e. prior to major anthropogenic impacts) ciliate communities of 48 lakes located along an elevation gradient using metabarcoding techniques applied on sedimentary DNA (sed-DNA). Our results show an overall decline in the β-diversity in recent time, especially in lowland lakes which are more strongly expose to local human pressure. Analyses of the functional groups indicate important restructuration of the trophic food web and changes that are consistent with several well documented environmental changes such as the widespread increase in deep water anoxia, changes in thermal stability and nutrient cycling. Our study demonstrates the potential offered by sed-DNA to uncover information about past ciliate communities on a wide variety of lakes and the potential of using ciliates as valuable indicators, integrating information from the pelagic to the benthic profundal (and littoral) zones. Through trait-based functional community approach, the ciliates provide additional valuable information on ecosystem functioning, thus offering more a holistic view on the long-term changes of aquatic ecosystems.

2020 ◽  
Author(s):  
Antoine Becker-Scarpitta ◽  
Diane Auberson-Lavoie ◽  
Mark Vellend

Abstract1: Despite many studies showing biodiversity responses to warming, the generality of such responses across taxa remains unclear. Very few studies have tested for evidence of bryophyte community responses to warming, despite the fact that bryophytes are major contributors to diversity in many ecosystems, playing a central role in ecosystem functions. Understanding variation among taxa in their responses to warming is crucial for identifying priorities in conservation.2: We report an empirical study comparing long-term change of bryophyte and vascular plant communities in two sites with contrasting long-term warming trends. To assess long-term responses of ecological communities to warming, we used “legacy” botanical records as a baseline for comparison with contemporary resurveys.We hypothesized that ecological changes would be greater in sites with a stronger warming trends, and that vascular plant communities would be more sensitive than bryophyte communities to climate warming. For each taxon in each site, we quantified the magnitude of changes in species’ distributions along the elevation gradient, species richness, and community composition.3: Temporal changes in vascular plant communities were consistent with the warming hypothesis, but this was not the case for bryophytes. We also did not find clear support for the hypothesis that vascular plants would show greater sensitivity than bryophytes to warming, with results depending on the metric of community change. As predicted for sites with a strong warming trend, we found a significant upward shift in the distributions of vascular plants but not bryophytes.Synthesis: Our results are in accordance with recent literature showing that local diversity can remain unchanged despite strong changes in composition. Regardless of whether one taxon is systematically more or less sensitive to environmental change than another, our results suggest that vascular plants cannot be used as a surrogate for bryophytes in terms of predicting the nature and magnitude of responses to warming. In sites that experienced the same environmental changes, we found that communities of bryophytes and vascular plants did not predictably change in the same ways. Thus, to assess overall biodiversity responses to global change, data from different taxonomical groups and community properties need to be synthesized.


Polar Biology ◽  
2021 ◽  
Author(s):  
Christina Braun ◽  
Jan Esefeld ◽  
Larisa Savelieva ◽  
Hans-Ulrich Peter

AbstractThe Antarctic and the surrounding Southern Ocean are currently subject to rapid environmental changes and increasing anthropogenic impacts. Seabird populations often reflect those changes and so act as indicators of environmental variability. Their population trends may provide information on a variety of environmental parameters on the scale of years or decades. We therefore provide long-term data on the cape petrel (Daption capense) population from a long-term monitoring program on Fildes Peninsula, South Shetland Islands, Maritime Antarctic, an area of considerable human activity. Our data, covering a period of 36 years, indicate some variability, but no clear trend in the number of breeding pairs between the breeding seasons 1985 and 2006. However, beginning in the 2008 season, the population decreased significantly and reached a minimum in the 2020 season. The mean annual decrease between 2008 and 2020 was 10.6%. We discuss possible causes of this strong negative population trend. Anthropogenic disturbance only affects a few breeding sites in the area and is therefore unable, on its own, to explain the consistent population decline at all the breeding sites studied. We think it more likely that reduced food availability was the main cause of the drastic decline in the cape petrel population.


Author(s):  
Rodrigo Cueva ◽  
Guillem Rufian ◽  
Maria Gabriela Valdes

The use of Customer Relationship Managers to foster customers loyalty has become one of the most common business strategies in the past years.  However, CRM solutions do not fill the abundance of happily ever-after relationships that business needs, and each client’s perception is different in the buying process.  Therefore, the experience must be precise, in order to extend the loyalty period of a customer as much as possible. One of the economic sectors in which CRM’s have improved this experience is retailing, where the personalized attention to the customer is a key factor.  However, brick and mortar experiences are not enough to be aware in how environmental changes could affect the industry trends in the long term.  A base unified theoretical framework must be taken into consideration, in order to develop an adaptable model for constructing or implementing CRMs into companies. Thanks to this approximation, the information is complemented, and the outcome will increment the quality in any Marketing/Sales initiative. The goal of this article is to explore the different factors grouped by three main domains within the impact of service quality, from a consumer’s perspective, in both on-line and off-line retailing sector.  Secondly, we plan to go a step further and extract base guidelines about previous analysis for designing CRM’s solutions focused on the loyalty of the customers for a specific retailing sector and its product: Sports Running Shoes.


The Holocene ◽  
2021 ◽  
pp. 095968362199464
Author(s):  
Katarzyna Marcisz ◽  
Krzysztof Buczek ◽  
Mariusz Gałka ◽  
Włodzimierz Margielewski ◽  
Matthieu Mulot ◽  
...  

Landslide mountain fens formed in landslide depressions are dynamic environments as their development is disturbed by a number of factors, for example, landslides, slopewash, and surface run-off. These processes lead to the accumulation of mineral material and wood in peat. Disturbed peatlands are interesting archives of past environmental changes, but they may be challenging for providing biotic proxy-based quantitative reconstructions. Here we investigate long-term changes in testate amoeba communities from two landslide mountain fens – so far an overlooked habitat for testate amoeba investigations. Our results show that abundances of testate amoebae are extremely low in this type of peatlands, therefore not suitable for providing quantitative depth-to-water table reconstructions. However, frequent shifts of dominant testate amoeba species reflect dynamic lithological situation of the studied fens. We observed that high and stable mineral matter input into the peatlands was associated with high abundances of species producing agglutinated (xenosomic) as well as idiosomic shells which prevailed in the testate amoeba communities in both analyzed profiles. This is the first study that explores testate amoebae of landslide mountain fens in such detail, providing novel information about microbial communities of these ecosystems.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Inah Hwang ◽  
Hiroki Uchida ◽  
Ziwei Dai ◽  
Fei Li ◽  
Teresa Sanchez ◽  
...  

AbstractNeural stem/progenitor cells (NSPCs) persist over the lifespan while encountering constant challenges from age or injury related brain environmental changes like elevated oxidative stress. But how oxidative stress regulates NSPC and its neurogenic differentiation is less clear. Here we report that acutely elevated cellular oxidative stress in NSPCs modulates neurogenic differentiation through induction of Forkhead box protein O3 (FOXO3)-mediated cGAS/STING and type I interferon (IFN-I) responses. We show that oxidative stress activates FOXO3 and its transcriptional target glycine-N-methyltransferase (GNMT) whose upregulation triggers depletion of s-adenosylmethionine (SAM), a key co-substrate involved in methyl group transfer reactions. Mechanistically, we demonstrate that reduced intracellular SAM availability disrupts carboxymethylation and maturation of nuclear lamin, which induce cytosolic release of chromatin fragments and subsequent activation of the cGAS/STING-IFN-I cascade to suppress neurogenic differentiation. Together, our findings suggest the FOXO3-GNMT/SAM-lamin-cGAS/STING-IFN-I signaling cascade as a critical stress response program that regulates long-term regenerative potential.


2011 ◽  
Vol 75 (3) ◽  
pp. 658-669 ◽  
Author(s):  
Yurena Yanes ◽  
Crayton J. Yapp ◽  
Miguel Ibáñez ◽  
María R. Alonso ◽  
Julio De-la-Nuez ◽  
...  

AbstractThe isotopic composition of land snail shells was analyzed to investigate environmental changes in the eastern Canary Islands (28–29°N) over the last ~ 50 ka. Shell δ13C values range from −8.9‰ to 3.8‰. At various times during the glacial interval (~ 15 to ~ 50 ka), moving average shell δ13C values were 3‰ higher than today, suggesting a larger proportion of C4 plants at those periods. Shell δ18O values range from −1.9‰ to 4.5‰, with moving average δ18O values exhibiting a noisy but long-term increase from 0.1‰ at ~ 50 ka to 1.6–1.8‰ during the LGM (~ 15–22 ka). Subsequently, the moving average δ18O values range from 0.0‰ at ~ 12 ka to 0.9‰ at present. Calculations using a published snail flux balance model for δ18O, constrained by regional temperatures and ocean δ18O values, suggest that relative humidity at the times of snail activity fluctuated but exhibited a long-term decline over the last ~ 50 ka, eventually resulting in the current semiarid conditions of the eastern Canary Islands (consistent with the aridification process in the nearby Sahara). Thus, low-latitude oceanic island land snail shells may be isotopic archives of glacial to interglacial and tropical/subtropical environmental change.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dennis Rödder ◽  
Thomas Schmitt ◽  
Patrick Gros ◽  
Werner Ulrich ◽  
Jan Christian Habel

AbstractClimate change impacts biodiversity and is driving range shifts of species and populations across the globe. To understand the effects of climate warming on biota, long-term observations of the occurrence of species and detailed knowledge on their ecology and life-history is crucial. Mountain species particularly suffer under climate warming and often respond to environmental changes by altitudinal range shifts. We assessed long-term distribution trends of mountain butterflies across the eastern Alps and calculated species’ specific annual range shifts based on field observations and species distribution models, counterbalancing the potential drawbacks of both approaches. We also compiled details on the ecology, behaviour and life-history, and the climate niche of each species assessed. We found that the highest altitudinal maxima were observed recently in the majority of cases, while the lowest altitudes of observations were recorded before 1980. Mobile and generalist species with a broad ecological amplitude tended to move uphill more than specialist and sedentary species. As main drivers we identified climatic conditions and topographic variables, such as insolation and solar irradiation. This study provides important evidence for responses of high mountain taxa to rapid climate change. Our study underlines the advantage of combining historical surveys and museum collection data with cutting-edge analyses.


2021 ◽  
Vol 13 (13) ◽  
pp. 7193
Author(s):  
Jiyeon Choi ◽  
Baekyung Park ◽  
Jinsun Kim ◽  
Soyoung Lee ◽  
Jichul Ryu ◽  
...  

This study aimed to estimate pollutant unit loads for different landuses and pollutants that reflected long-term runoff characteristics of nonpoint source (NPS) pollutants and recent environmental changes. During 2008–2014, 2026 rainfall events were monitored. The average values of antecedent dry days, total rainfall, rainfall intensity, rainfall duration, runoff duration, and runoff coefficient for each landuse were 3.8–5.9 d, 35.2–65.0 mm, 2.9–4.1 mm/h, 12.5–20.4 h, 12.4–27.9 h, and 0.24–0.45, respectively. Uplands (UL) exhibited high suspended solids (SS, 606.2 mg/L), total nitrogen (TN, 7.38 mg/L), and total phosphorous (TP, 2.27 mg/L) levels, whereas the runoff coefficient was high in the building sites (BS), with a high impervious surface ratio. The event mean concentration (EMC) for biological oxygen demand (BOD) was the highest in BS (8.0 mg/L), while the EMC was the highest in BS (in the rainfall range <10 mm) and UL and forest land (in the rainfall range >50 mm). The unit loads for BOD (1.49–17.76 kg/km2·d), TN (1.462–10.147 kg/km2·d), TP (0.094–1.435 kg/km2·d), and SS (15.20–327.70 kg/km2·d) were calculated. The findings can be used to manage NPS pollutants and watershed environments and implement relevant associated management systems.


Paleobiology ◽  
1975 ◽  
Vol 1 (3) ◽  
pp. 238-257 ◽  
Author(s):  
Kenneth R. Walker ◽  
Leonard P. Alberstadt

Succession involves changes in a community through time, whether internally or externally controlled. As succession progresses, niche specialization, species diversity (variety and equitability), complexity of food chains, and pattern diversity increase; net production and species growth rate decrease. We apply the succession concept to three types of ancient community sequences: 1) fossil reefs (Ordovician—Cretaceous in age), 2) short-term successions occurring through thin stratigraphic intervals, and 3) long-term successions occurring through thicker stratigraphic intervals. Ancient reefs show four vertical zones: (1) a basal stabilization zone (autogenic), 2) the overlying colonization zone (autogenic, pioneer stage), 3) the diversification zone, the bulk of most reefs (diversification culminating in climax), and 4) the uppermost domination zone. The first three zones represent autogenic succession but the final stage may involve allogenic succession. Short-term succession usually occurs where periodic allogenic catastrophes wipe out the community which is rebuilt through autogenic succession. Opportunistic pioneer species are important and in our examples (Ordovician, Silurian, and Cretaceous) are species which pave soft substrata. Paleozoic strophomenid brachiopods filled this role, and inoceramid pelecypods served the function in the Mesozoic. The succession which begins with opportunists progresses to a climax community of equilibrists. Repetition of catastrophe-succession couplets produces a cyclic stratigraphic record. Long-term successions are recorded in thicker stratigraphic sequences, and are of two types: 1) autogenic succession in unchanging physical environments and 2) allogenic succession in changing physical environments. Our examples of these are from the Devonian Haragan-Bois D'Arc formations of Oklahoma and the Lime Creek Formation of Iowa. This type of succession represents a temporal-spatial mosaic. The Haragan data (unchanging environments) indicate characteristic, intergrading, and ubiquitous species in the brachiopod communities. Most ubiquitous species in the pioneer community were eurytopic opportunists. The Lime Creek data allows testing of the prediction that environmental changes cause regression to an earlier succession stage. The brachiopod communities after environmental changes have more ubiquitous and intergrading eurytopic species. These represent an earlier stage in the succession.


Sign in / Sign up

Export Citation Format

Share Document