scholarly journals Tandem repeats structure of gel-forming mucin domains could be revealed by SMRT sequencing data

Author(s):  
Tiange Lang

Abstract Mucins are large glycoproteins that cover and protect epithelial surface of the body. Gel-forming mucin domains of mucin genes are rich in proline, threonine, and serine that are heavily glycosylate. These domains show great complexity with tandem repeats (TRs), thus make it difficult to study the sequences. With the coming of single molecule real-time (SMRT) sequencing technologies, we manage to present sequence structure of mucin domains via SMRT long reads for gel-forming mucins MUC2, MUC5AC, MUC5B and MUC6. Our study shows that for different individuals, single nucleotide polymorphisms (SNPs) could be found in mucin domains of MUC2, MUC5AC, MUC5B and MUC6, while different number of tandem repeats could be found in mucin domains of MUC2 and MUC6. Furthermore, we get the sequence of MUC2, MUC5AC, and MUC5B mucin domain in a Chinese individual at accuracy of possibly maximum 99.98%, 99.93%, and 99.76%, respectively. We report a new method to obtain DNA sequence of gel-forming mucin domains. This method will provided new insights on getting the sequence for Tandem Repeat parts which locate in coding region. With the sequences we obtained with this method, we can give more information for people to study the sequences of gel-forming mucin domains.

2020 ◽  
Author(s):  
Tiange Lang

Abstract Background. Gel-forming mucin domains of mucin genes show great complexity with tandem repeats (TRs), thus make it difficult to study the sequences. Methods. With the coming of single molecule real-time (SMRT) sequencing technologies, we manage to present sequence structure of mucin domains via SMRT long reads for MUC2, MUC5AC, MUC5B and MUC6. Results. Our study shows that for different individuals, single nucleotide polymorphisms (SNPs) could be found in mucin domains of MUC2, MUC5AC, MUC5B and MUC6, while different number of tandem repeats could be found in mucin domains of MUC2 and MUC6. Conclusions. This information will provided new insights on getting the sequence for Tandem Repeat parts which locate in coding region.


2019 ◽  
Vol 21 (6) ◽  
pp. 1971-1986 ◽  
Author(s):  
Matteo Chiara ◽  
Federico Zambelli ◽  
Ernesto Picardi ◽  
David S Horner ◽  
Graziano Pesole

Abstract A number of studies have reported the successful application of single-molecule sequencing technologies to the determination of the size and sequence of pathological expanded microsatellite repeats over the last 5 years. However, different custom bioinformatics pipelines were employed in each study, preventing meaningful comparisons and somewhat limiting the reproducibility of the results. In this review, we provide a brief summary of state-of-the-art methods for the characterization of expanded repeats alleles, along with a detailed comparison of bioinformatics tools for the determination of repeat length and sequence, using both real and simulated data. Our reanalysis of publicly available human genome sequencing data suggests a modest, but statistically significant, increase of the error rate of single-molecule sequencing technologies at genomic regions containing short tandem repeats. However, we observe that all the methods herein tested, irrespective of the strategy used for the analysis of the data (either based on the alignment or assembly of the reads), show high levels of sensitivity in both the detection of expanded tandem repeats and the estimation of the expansion size, suggesting that approaches based on single-molecule sequencing technologies are highly effective for the detection and quantification of tandem repeat expansions and contractions.


2020 ◽  
Author(s):  
Ivan de la Rubia ◽  
Joel A. Indi ◽  
Silvia Carbonell-Sala ◽  
Julien Lagarde ◽  
M Mar Albà ◽  
...  

AbstractSingle-molecule long-read sequencing with Nanopore provides an unprecedented opportunity to measure transcriptomes from any sample1–3. However, current analysis methods rely on the comparison with a reference genome or transcriptome2,4,5, or the use of multiple sequencing technologies6,7, thereby precluding cost-effective studies in species with no genome assembly available, in individuals underrepresented in the existing reference, and for the discovery of disease-specific transcripts not directly identifiable from a reference genome. Methods for DNA assembly8–10 cannot be directly transferred to transcriptomes since their consensus sequences lack the required interpretability for genes with multiple transcript isoforms. To address these challenges, we have developed RATTLE, the first tool to perform reference-free reconstruction and quantification of transcripts from Nanopore long reads. Using simulated data, isoform spike-ins, and sequencing data from tissues and cell lines, we demonstrate that RATTLE accurately determines transcript sequence and abundance, is comparable to reference-based methods, and shows saturation in the number of predicted transcripts with increasing number of input reads.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Jean-Marc Aury ◽  
Benjamin Istace

Abstract Single-molecule sequencing technologies have recently been commercialized by Pacific Biosciences and Oxford Nanopore with the promise of sequencing long DNA fragments (kilobases to megabases order) and then, using efficient algorithms, provide high quality assemblies in terms of contiguity and completeness of repetitive regions. However, the error rate of long-read technologies is higher than that of short-read technologies. This has a direct consequence on the base quality of genome assemblies, particularly in coding regions where sequencing errors can disrupt the coding frame of genes. In the case of diploid genomes, the consensus of a given gene can be a mixture between the two haplotypes and can lead to premature stop codons. Several methods have been developed to polish genome assemblies using short reads and generally, they inspect the nucleotide one by one, and provide a correction for each nucleotide of the input assembly. As a result, these algorithms are not able to properly process diploid genomes and they typically switch from one haplotype to another. Herein we proposed Hapo-G (Haplotype-Aware Polishing Of Genomes), a new algorithm capable of incorporating phasing information from high-quality reads (short or long-reads) to polish genome assemblies and in particular assemblies of diploid and heterozygous genomes.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ratanond Koonchanok ◽  
Swapna Vidhur Daulatabad ◽  
Quoseena Mir ◽  
Khairi Reda ◽  
Sarath Chandra Janga

Abstract Background Direct-sequencing technologies, such as Oxford Nanopore’s, are delivering long RNA reads with great efficacy and convenience. These technologies afford an ability to detect post-transcriptional modifications at a single-molecule resolution, promising new insights into the functional roles of RNA. However, realizing this potential requires new tools to analyze and explore this type of data. Result Here, we present Sequoia, a visual analytics tool that allows users to interactively explore nanopore sequences. Sequoia combines a Python-based backend with a multi-view visualization interface, enabling users to import raw nanopore sequencing data in a Fast5 format, cluster sequences based on electric-current similarities, and drill-down onto signals to identify properties of interest. We demonstrate the application of Sequoia by generating and analyzing ~ 500k reads from direct RNA sequencing data of human HeLa cell line. We focus on comparing signal features from m6A and m5C RNA modifications as the first step towards building automated classifiers. We show how, through iterative visual exploration and tuning of dimensionality reduction parameters, we can separate modified RNA sequences from their unmodified counterparts. We also document new, qualitative signal signatures that characterize these modifications from otherwise normal RNA bases, which we were able to discover from the visualization. Conclusions Sequoia’s interactive features complement existing computational approaches in nanopore-based RNA workflows. The insights gleaned through visual analysis should help users in developing rationales, hypotheses, and insights into the dynamic nature of RNA. Sequoia is available at https://github.com/dnonatar/Sequoia.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Joseph R. Fauver ◽  
John Martin ◽  
Gary J. Weil ◽  
Makedonka Mitreva ◽  
Peter U. Fischer

AbstractFilarial nematode infections cause a substantial global disease burden. Genomic studies of filarial worms can improve our understanding of their biology and epidemiology. However, genomic information from field isolates is limited and available reference genomes are often discontinuous. Single molecule sequencing technologies can reduce the cost of genome sequencing and long reads produced from these devices can improve the contiguity and completeness of genome assemblies. In addition, these new technologies can make generation and analysis of large numbers of field isolates feasible. In this study, we assessed the performance of the Oxford Nanopore Technologies MinION for sequencing and assembling the genome of Brugia malayi, a human parasite widely used in filariasis research. Using data from a single MinION flowcell, a 90.3 Mb nuclear genome was assembled into 202 contigs with an N50 of 2.4 Mb. This assembly covered 96.9% of the well-defined B. malayi reference genome with 99.2% identity. The complete mitochondrial genome was obtained with individual reads and the nearly complete genome of the endosymbiotic bacteria Wolbachia was assembled alongside the nuclear genome. Long-read data from the MinION produced an assembly that approached the quality of a well-established reference genome using comparably fewer resources.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1776
Author(s):  
Mourdas Mohamed ◽  
Nguyet Thi-Minh Dang ◽  
Yuki Ogyama ◽  
Nelly Burlet ◽  
Bruno Mugat ◽  
...  

Transposable elements (TEs) are the main components of genomes. However, due to their repetitive nature, they are very difficult to study using data obtained with short-read sequencing technologies. Here, we describe an efficient pipeline to accurately recover TE insertion (TEI) sites and sequences from long reads obtained by Oxford Nanopore Technology (ONT) sequencing. With this pipeline, we could precisely describe the landscapes of the most recent TEIs in wild-type strains of Drosophila melanogaster and Drosophila simulans. Their comparison suggests that this subset of TE sequences is more similar than previously thought in these two species. The chromosome assemblies obtained using this pipeline also allowed recovering piRNA cluster sequences, which was impossible using short-read sequencing. Finally, we used our pipeline to analyze ONT sequencing data from a D. melanogaster unstable line in which LTR transposition was derepressed for 73 successive generations. We could rely on single reads to identify new insertions with intact target site duplications. Moreover, the detailed analysis of TEIs in the wild-type strains and the unstable line did not support the trap model claiming that piRNA clusters are hotspots of TE insertions.


2020 ◽  
Vol 15 (1) ◽  
pp. 2-16
Author(s):  
Yuwen Luo ◽  
Xingyu Liao ◽  
Fang-Xiang Wu ◽  
Jianxin Wang

Transcriptome assembly plays a critical role in studying biological properties and examining the expression levels of genomes in specific cells. It is also the basis of many downstream analyses. With the increase of speed and the decrease in cost, massive sequencing data continues to accumulate. A large number of assembly strategies based on different computational methods and experiments have been developed. How to efficiently perform transcriptome assembly with high sensitivity and accuracy becomes a key issue. In this work, the issues with transcriptome assembly are explored based on different sequencing technologies. Specifically, transcriptome assemblies with next-generation sequencing reads are divided into reference-based assemblies and de novo assemblies. The examples of different species are used to illustrate that long reads produced by the third-generation sequencing technologies can cover fulllength transcripts without assemblies. In addition, different transcriptome assemblies using the Hybrid-seq methods and other tools are also summarized. Finally, we discuss the future directions of transcriptome assemblies.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chuanfeng Huang ◽  
Libin Shao ◽  
Shoufang Qu ◽  
Junhua Rao ◽  
Tao Cheng ◽  
...  

Abstract Sequencing technologies have been rapidly developed recently, leading to the breakthrough of sequencing-based clinical diagnosis, but accurate and complete genome variation benchmark would be required for further assessment of precision medicine applications. Despite the human cell line of NA12878 has been successfully developed to be a variation benchmark, population-specific variation benchmark is still lacking. Here, we established an Asian human variation benchmark by constructing and sequencing a stabilized cell line of a Chinese Han volunteer. By using seven different sequencing strategies, we obtained ~3.88 Tb clean data from different laboratories, hoping to reach the point of high sequencing depth and accurate variation detection. Through the combination of variations identified from different sequencing strategies and different analysis pipelines, we identified 3.35 million SNVs and 348.65 thousand indels, which were well supported by our sequencing data and passed our strict quality control, thus should be high confidence variation benchmark. Besides, we also detected 5,913 high-quality SNVs which had 969 sites were novel and  located in the high homologous regions supported by long-range information in both the co-barcoding single tube Long Fragment Read (stLFR) data and PacBio HiFi CCS data. Furthermore, by using the long reads data (stLFR and HiFi CCS), we were able to phase more than 99% heterozygous SNVs, which helps to improve the benchmark to be haplotype level. Our study provided comprehensive sequencing data as well as the integrated variation benchmark of an Asian derived cell line, which would be valuable for future sequencing-based clinical development.


2017 ◽  
Author(s):  
Jia-Xing Yue ◽  
Gianni Liti

AbstractLong-read sequencing technologies have become increasingly popular in genome projects due to their strengths in resolving complex genomic regions. As a leading model organism with small genome size and great biotechnological importance, the budding yeast, Saccharomyces cerevisiae, has many isolates currently being sequenced with long reads. However, analyzing long-read sequencing data to produce high-quality genome assembly and annotation remains challenging. Here we present LRSDAY, the first one-stop solution to streamline this process. LRSDAY can produce chromosome-level end-to-end genome assembly and comprehensive annotations for various genomic features (including centromeres, protein-coding genes, tRNAs, transposable elements and telomere-associated elements) that are ready for downstream analysis. Although tailored for S. cerevisiae, we designed LRSDAY to be highly modular and customizable, making it adaptable for virtually any eukaryotic organisms. Applying LRSDAY to a S. cerevisiae strain takes ∼43 hrs to generate a complete and well-annotated genome from ∼100X Pacific Biosciences (PacBio) reads using four threads.


Sign in / Sign up

Export Citation Format

Share Document