scholarly journals Elucidating the Gut Microbiome of Colorectal Cancer: 40 Fecal Bacteria as Non-invasive Biomarkers

Author(s):  
Biao Yuan ◽  
SiPing Ma ◽  
Qingkai Meng ◽  
Tao Du ◽  
Yueyan Zhu ◽  
...  

Abstract Background: Colorectal adenocarcinoma (CRC) ranks one of the 5 most lethal malignant tumors both in China and worldwide. Emerging evidences have revealed the importance of gut microbiome on CRC, thus microbial community could be termed as a potential screen for early diagnosis. Importantly, compared with the whole microbial community analysis, few numbers of bacteria genus as non-invasive biomarkers with high sensitivity and specificity causing less cost would benefit more in clinical. Methods: Here we analyzed the gut microbiome from 226 CRC patients and 156 healthy people by 16s rRNA sequencing. We analyzed the microbiome diversity between CRC patients and healthy controls. We used ExtraTrees classifier to screening the biomarkers and took SVM (Support Vector Machine) model to test the specificity and sensitivity of our biomarkers. Results: Compared with the healthy gut, the microbial composition are divergent in CRC, especially the increase of some bacteria related to CRC and the decrease of some healthy bacteria. 40 bacteria genus exhibiting high weight for the healthy and CRC microbiome classification were screened as biomarkers for CRC. In addition, the combination of 40 biomarkers and FOBT showed an outstanding sensitivity and specificity for discrimination CRC patients from healthy controls. Conclusion: The method could be used as a non-invasive method for CRC early diagnosis.

2021 ◽  
Vol 11 ◽  
Author(s):  
Biao Yuan ◽  
Bin Ma ◽  
Jing Yu ◽  
Qingkai Meng ◽  
Tao Du ◽  
...  

Colorectal adenocarcinoma (CRC) ranks one of the five most lethal malignant tumors both in China and worldwide. Early diagnosis and treatment of CRC could substantially increase the survival rate. Emerging evidence has revealed the importance of gut microbiome on CRC, thus fecal microbial community could be termed as a potential screen for non-invasive diagnosis. Importantly, few numbers of bacteria genus as non-invasive biomarkers with high sensitivity and specificity causing less cost would be benefitted more in clinical compared with the whole microbial community analysis. Here we analyzed the gut microbiome between CRC patients and healthy people using 16s rRNA sequencing showing the divergence of microbial composition between case and control. Furthermore, ExtraTrees classifier was performed for the classification of CRC gut microbiome and heathy control, and 13 bacteria were screened as biomarkers for CRC. In addition, 13 biomarkers including 12 bacteria genera and FOBT showed an outstanding sensitivity and specificity for discrimination of CRC patients from healthy controls. This method could be used as a non-invasive method for CRC early diagnosis.


2020 ◽  
Vol 11 (3) ◽  
pp. 227-233
Author(s):  
C. Ozkul ◽  
M. Yalinay ◽  
T. Karakan

It has been largely accepted that dietary changes have an effect on gut microbial composition. In this pilot study we hypothesised that Ramadan fasting, which can be considered as a type of time-restricted feeding may lead to changes in gut microbial composition and diversity. A total of 9 adult subjects were included in the study. Stool samples were collected before (baseline) and at the end of the Ramadan fasting (after 29 days). Following the construction of an 16S rRNA amplicon library, the V4 region was sequenced using the Illumina Miseq platform. Microbial community analysis was performed using the QIIME program. A total of 27,521 operational taxonomic units (OTUs) with a 97% similarity were determined in all of the samples. Microbial richness was significantly increased after Ramadan according to observed OTU results (P=0.016). No significant difference was found in terms of Shannon index or phylogenetic diversity metrics of alpha diversity. Microbial community structure was significantly different between baseline and after Ramadan samples according to unweighted UniFrac analysis (P=0.025). LEfSe analysis revealed that Butyricicoccus, Bacteroides, Faecalibacterium, Roseburia, Allobaculum, Eubacterium, Dialister and Erysipelotrichi were significantly enriched genera after the end of Ramadan fasting. According to random forest analysis, the bacterial species most affected by the Ramadan fasting was Butyricicoccus pullicaecorum. Despite this is a pilot study with a limited sample size; our results clearly revealed that Ramadan fasting, which represents an intermittent fasting regime, leads to compositional changes in the gut microbiota.


2019 ◽  
Vol 5 (2) ◽  
pp. eaau8317 ◽  
Author(s):  
Peng Zheng ◽  
Benhua Zeng ◽  
Meiling Liu ◽  
Jianjun Chen ◽  
Junxi Pan ◽  
...  

Schizophrenia (SCZ) is a devastating mental disorder with poorly defined underlying molecular mechanisms. The gut microbiome can modulate brain function and behaviors through the microbiota-gut-brain axis. Here, we found that unmedicated and medicated patients with SCZ had a decreased microbiome α-diversity index and marked disturbances of gut microbial composition versus healthy controls (HCs). Several unique bacterial taxa (e.g., Veillonellaceae and Lachnospiraceae) were associated with SCZ severity. A specific microbial panel (Aerococcaceae, Bifidobacteriaceae, Brucellaceae, Pasteurellaceae, and Rikenellaceae) enabled discriminating patients with SCZ from HCs with 0.769 area under the curve. Compared to HCs, germ-free mice receiving SCZ microbiome fecal transplants had lower glutamate and higher glutamine and GABA in the hippocampus and displayed SCZ-relevant behaviors similar to other mouse models of SCZ involving glutamatergic hypofunction. Together, our findings suggest that the SCZ microbiome itself can alter neurochemistry and neurologic function in ways that may be relevant to SCZ pathology.


Gut ◽  
2019 ◽  
Vol 69 (3) ◽  
pp. 569-577 ◽  
Author(s):  
Yiran Wei ◽  
Yanmei Li ◽  
Li Yan ◽  
Chunyan Sun ◽  
Qi Miao ◽  
...  

ObjectiveThe significance of the liver-microbiome axis has been increasingly recognised as a major modulator of autoimmunity. The aim of this study was to take advantage of a large well-defined corticosteroids treatment-naïve group of patients with autoimmune hepatitis (AIH) to rigorously characterise gut dysbiosis compared with healthy controls.DesignWe performed a cross-sectional study of individuals with AIH (n=91) and matched healthy controls (n=98) by 16S rRNA gene sequencing. An independent cohort of 28 patients and 34 controls was analysed to validate the results. All the patients were collected before corticosteroids therapy.ResultsThe gut microbiome of steroid treatment-naïve AIH was characterised with lower alpha-diversity (Shannon and observed operational taxonomic units, both p<0.01) and distinct overall microbial composition compared with healthy controls (p=0.002). Depletion of obligate anaerobes and expansion of potential pathobionts including Veillonella were associated with disease status. Of note, Veillonella dispar, the most strongly disease-associated taxa (p=8.85E–8), positively correlated with serum level of aspartate aminotransferase and liver inflammation. Furthermore, the combination of four patients with AIH-associated genera distinguished AIH from controls with an area under curves of approximately 0.8 in both exploration and validation cohorts. In addition, multiple predicted functional modules were altered in the AIH gut microbiome, including lipopolysaccharide biosynthesis as well as metabolism of amino acids that can be processed by bacteria to produce immunomodulatory metabolites.ConclusionOur study establishes compositional and functional alterations of gut microbiome in AIH and suggests the potential for using gut microbiota as non-invasive biomarkers to assess disease activity.


2020 ◽  
Vol 4 (1) ◽  
pp. 23-30
Author(s):  
Margit Juhasz ◽  
Siwei Chen ◽  
Arash Khosrovi-Eghbal ◽  
Chloe Ekelem ◽  
Yessica Landaverde ◽  
...  

Background: Alopecia areata (AA) is caused by autoimmune attack of the hair follicle. The exact pathogenesis is unknown, but hypotheses include innate immunity imbalance, environmental exposures, genetic predisposition, and possibly the microbiome. The objective of this study was to characterize the skin and gut microbiome of AA patients, and compare microbial composition to healthy individuals. Methods: This was a pilot, case-control study. Scalp and fecal microbiome samples were collected from 25 AA patients, and 25 age, gender, and race-matched healthy controls in Southern California with no significant difference in demographic characteristics. After library preparation and identification of bacterial and fungal taxonomy, multivariant analysis was performed to compare AA and healthy microbiomes. Results: The AA scalp microbiome was significant for decreased Clostridia and Malasseziomycetes, and the gut microbiome was significant for decreased Bacteroidia and increased Bacilli (p<0.05) compared to healthy controls. Conclusions: The composition of the AA bacterial and fungal, scalp and gut microbiome is significantly different than healthy individuals. Future directions include using this data to characterize microbial changes associated with AA patient diet, relating to disease severity, and predicting disease progression, prognosis and/or therapeutic response.


2020 ◽  
Author(s):  
Daniela Gaio ◽  
Matthew Z DeMaere ◽  
Kay Anantanawat ◽  
Graeme J Eamens ◽  
Michael Liu ◽  
...  

Abstract BackgroundEarly weaning and intensive farming practices predispose piglets to the development of infectious and often lethal diseases, against which antibiotics are used. Besides contributing to the build-up of antimicrobial resistance, antibiotics are known to modulate the gut microbial composition. Studies have previously investigated the effects of probiotics as alternatives to antibiotic treatment for the prevention of post-weaning diarrhea. In order to describe the post-weaning gut microbiota, and the effects of two probiotics formulations and of intramuscular antibiotic treatment on the gut microbiota, we processed over 800 faecal time-series samples from 126 piglets and 42 sows, generating over 8Tbp of metagenomic shotgun sequence data. Here we describe the animal trial procedures, the generation of our metagenomic dataset and the analysis of the microbial community composition using a phylogenetic framework.ResultsFactors such as age, litter effects, and breed, by significantly correlating with gut microbial community shifts, can be major confounding factors in the assessment of treatment effects. Intramuscular antibiotic treatment and probiotic treatments were found to correlate with alpha and beta diversity, as well as with a transient establishment of Mollicutes and Lactobacillales, respectively. We found the abundance of certain taxa to correlate with weight gain.ConclusionsOur findings demonstrate that breed, litter, and age, are important contributors to variation in the community composition, and that treatment effects of the antibiotic and probiotic treatments were subtle, while host age was the dominant factor in shaping the gut microbiota of piglets after weaning. The current study shows, by means of a phylogenetic diversity framework, that the post-weaning pig gut microbiome appears to follow a highly structured developmental program with characteristic post-weaning changes that can distinguish hosts that were born as little as two days apart in the second month of life.


2011 ◽  
Vol 255-260 ◽  
pp. 2934-2939 ◽  
Author(s):  
Jian Fang Wang ◽  
Qing Liang Zhao

In situ sludge reduction of the oxic-settling-anaerobic (OSA) process was investigated in this study and microbial community diversity in the system was analyzed by using a PCR-denaturing gradient gel electrophoresis (DGGE) approach. Comparing to the conventional activated sludge method, the production of excessive sludge in the OSA process was shown to be efficiently reduced by 44-50 % and the organic loading rate was observed to have a slight impact on sludge yield. As demonstrated by the slight variation of Shannon diversity indices (SDI), the dominant microbial composition remained stable in the OSA sludge with the increase ofNs. About 63% of clones represented by predominant bands in the DGGE pattern were affiliated with the subclass ofb-proteobacteria. A number of bacteria in the OSA process were phylogenetically related to uncultured bacteria isolated from enhanced biological phosphorus removal (EBPR) sludge.


2019 ◽  
Vol 7 (6) ◽  
pp. 434-443 ◽  
Author(s):  
Lei-Jia Li ◽  
Xiao-Ying Wu ◽  
Si-Wei Tan ◽  
Zi-Jun Xie ◽  
Xue-Mei Pan ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) have been applied as biomarkers in many diseases. However, scarce biomarkers are available in single lncRNA differential expression associated with different clinical stages of liver cirrhosis (LC). The aim of the study is to identify some lncRNAs that can serve as non-invasive sensitive biomarkers for early diagnosis and grade of LC. Methods Blood lncRNA expression was evaluated in three independent cohorts with 305 participants including healthy controls, hepatitis B virus (HBV) carriers, and patients with chronic hepatitis B (CHB) or LC. First, candidate lncRNAs were screened by CapitalBiotech microarray to diagnose cirrhosis. Quantitative reverse-transcriptase polymerase chain reaction was then used to investigate the expression of selected lncRNAs in the whole group of cirrhosis and different Child–Pugh classes. Ultimately, the diagnostic accuracy of the promising biomarker was examined and validated via Mann–Whitney test and receiver-operating characteristics analysis. Results Lnc-TCL6 was identified as a sensitive biomarker for early diagnosis of LC (Child–Pugh A) compared with healthy controls (area under the ROC curve [AUC] = 0.636), HBV carriers (AUC = 0.671), and CHB patients (AUC = 0.672). Furthermore, lnc-TCL6 showed a favourable capacity in discriminating among different Child–Pugh classes (AUC: 0.711–0.837). Compared with healthy controls, HBV carriers, and CHB patients, the expression of lnc-TCL6 was obviously up-regulated in Child–Pugh A patients and, conversely, significantly down-regulated in Child–Pugh C patients. Conclusions Lnc-TCL6 is a novel potential biomarker for early diagnosis of LC and is a possible predictor of disease progression.


2020 ◽  
Author(s):  
Roberto Mendez ◽  
Arjun Watane ◽  
Monika Farhangi ◽  
Kara M. Cavuoto ◽  
Tom Leith ◽  
...  

Abstract Background: Autoimmune diseases have been associated with changes in the gut microbiome. In this study, the gut microbiome was evaluated in individuals with dry eye and bacterial compositions were correlated to dry eye (DE) measures. We prospectively included 13 individuals with who met full criteria for Sjögren’s (SDE) and 8 individuals with features of Sjögren’s but who did not meet full criteria (NDE) for a total of 21 cases as compared to 21 healthy controls. Stool was analyzed by 16S pyrosequencing, and associations between bacterial classes and DE symptoms and signs were examined. Results: Results showed that Firmicutes was the dominant phylum in the gut, comprising 40-60% of all phyla. On a phyla level, subjects with DE (SDE and NDE) had depletion of Firmicutes (1.1-fold) and an expansion of Proteobacteria (3.0-fold), Actinobacteria (1.7-fold), and Bacteroidetes (1.3-fold) compared to controls. Shannon’s diversity index showed no differences between groups with respect to the numbers of different operational taxonomic units (OTUs) encountered (diversity) and the instances these unique OTUs were sampled (evenness). On the other hand, Faith’s phylogenetic diversity showed increased diversity in cases vs controls, which reached significance when comparing SDE and controls (13.57 ± 0.89 and 10.96 ± 0.76, p=0.02). Using Principle Co-ordinate Analysis, qualitative differences in microbial composition were noted with differential clustering of cases and controls. Dimensionality reduction and clustering of complex microbial data further showed differences between the three groups, with regard to microbial composition, association and clustering. Finally, differences in certain classes of bacteria were associated with DE symptoms and signs. Conclusions: In conclusion, individuals with DE had gut microbiome alterations as compared to healthy controls. Certain classes of bacteria were associated with DE measures. These findings set the foundation for gut microbiome modulation as a potential therapeutic approach for DE.


Author(s):  
Yizhou Yao ◽  
Haishun Ni ◽  
Xuchao Wang ◽  
Qixuan Xu ◽  
Jiawen Zhang ◽  
...  

BackgroundThe intestinal flora is correlated with the occurrence of colorectal cancer. We evaluate a new predictive model for the non-invasive diagnosis of colorectal cancer based on intestinal flora to verify the clinical application prospects of the intestinal flora as a new biomarker in non-invasive screening of colorectal cancer.MethodsSubjects from two independent Asian cohorts (cohort I, consisting of 206 colorectal cancer and 112 healthy subjects; cohort II, consisting of 67 colorectal cancer and 54 healthy subjects) were included. A probe-based duplex quantitative PCR (qPCR) determination was established for the quantitative determination of candidate bacterial markers.ResultsWe screened through the gutMEGA database to identify potential non-invasive biomarkers for colorectal cancer, including Prevotella copri (Pc), Gemella morbillorum (Gm), Parvimonas micra (Pm), Cetobacterium somerae (Cs), and Pasteurella stomatis (Ps). A predictive model with good sensitivity and specificity was established as a new diagnostic tool for colorectal cancer. Under the best cutoff value that maximizes the sum of sensitivity and specificity, Gm and Pm had better specificity and sensitivity than other target bacteria. The combined detection model of five kinds of bacteria showed better diagnostic ability than Gm or Pm alone (AUC = 0.861, P &lt; 0.001). These findings were further confirmed in the independent cohort II. Particularly, the combination of bacterial markers and fecal immunochemical test (FIT) improved the diagnostic ability of the five bacteria (sensitivity 67.96%, specificity 89.29%) for patients with colorectal cancer.ConclusionFecal-based colorectal cancer-related bacteria can be used as new non-invasive diagnostic biomarkers of colorectal cancer. Simultaneously, the molecular biomarkers in fecal samples are similar to FIT, have the applicability in combination with other detection methods, which is expected to improve the sensitivity of diagnosis for colorectal cancer, and have a promising prospect of clinical application.


Sign in / Sign up

Export Citation Format

Share Document