scholarly journals Effect of Processing Parameters On Mechanical Properties of Inconel718 Superalloy Fabricated By Direct Energy Deposit

Author(s):  
Tianhao Jia ◽  
Bin Zou ◽  
Wenbo Liu ◽  
Ting Lei ◽  
Hongjian Ding

Abstract In this study, Inconel718 specimens with good mechanical properties were prepared by direct energy deposit (DED) with different laser processing parameters. The mechanical properties of Inconel718 samples fabricated by laser direct energy deposit method without heat treatment were measured. The fractures and metallographic structures of prepared Inconel718 were observed, and the mechanism of the effect of diverse machining parameters on mechanical properties of Inconel718 was analyzed from the micro level. The results showed the microstructures of depositions of Inconel 718 specimens prepared by DED were compact with fine grains and anisotropic microstructures, where macroscopic defects were barely seen. The mechanical properties and microstructures of Inconel718 were influenced by processing parameters, among which the forming angle and laser power had the most remarkable effect. According to the experimental data, it could be observed that the Inconel718 specimens prepared by DED had the best performance under the circumstance of 1400W laser power, 1.0mm layer thickness, 600mm/min scanning speed, 1.3mm hatch spacing, and 90° forming angle, whose ultimate tensile strength (UTS) and macro hardness were 1016.10MPa and 36.2HRC respectively. The UTS of Inconel 718 manufactured by DED was close to that of Inconel718 prepared by traditional forging, and even it had higher hardness.

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 876 ◽  
Author(s):  
Sapam Ningthemba Singh ◽  
Sohini Chowdhury ◽  
Yadaiah Nirsanametla ◽  
Anil Kumar Deepati ◽  
Chander Prakash ◽  
...  

Investigation of the selective laser melting (SLM) process, using finite element method, to understand the influences of laser power and scanning speed on the heat flow and melt-pool dimensions is a challenging task. Most of the existing studies are focused on the study of thin layer thickness and comparative study of same materials under different manufacturing conditions. The present work is focused on comparative analysis of thermal cycles and complex melt-pool behavior of a high layer thickness multi-layer laser additive manufacturing (LAM) of pure Titanium (Ti) and Inconel 718. A transient 3D finite-element model is developed to perform a quantitative comparative study on two materials to examine the temperature distribution and disparities in melt-pool behaviours under similar processing conditions. It is observed that the layers are properly melted and sintered for the considered process parameters. The temperature and melt-pool increases as laser power move in the same layer and when new layers are added. The same is observed when the laser power increases, and opposite is observed for increasing scanning speed while keeping other parameters constant. It is also found that Inconel 718 alloy has a higher maximum temperature than Ti material for the same process parameter and hence higher melt-pool dimensions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
You-Cheng Chang ◽  
Hong-Chuong Tran ◽  
Yu-Lung Lo

Purpose Laser powder bed fusion (LPBF) provides the means to produce unique components with almost no restriction on geometry in an extremely short time. However, the high-temperature gradient and high cooling rate produced during the fabrication process result in residual stress, which may prompt part warpage, cracks or even baseplate separation. Accordingly, an appropriate selection of the LPBF processing parameters is essential to ensure the quality of the built part. This study, thus, aims to develop an integrated simulation framework consisting of a single-track heat transfer model and a modified inherent shrinkage method model for predicting the curvature of an Inconel 718 cantilever beam produced using the LPBF process. Design/methodology/approach The simulation results for the curvature of the cantilever beam are calibrated via a comparison with the experimental observations. It is shown that the calibration factor required to drive the simulation results toward the experimental measurements has the same value for all settings of the laser power and scanning speed. Representative combinations of the laser power and scanning speed are, thus, chosen using the circle packing design method and supplied as inputs to the validated simulation framework to predict the corresponding cantilever beam curvature and density. The simulation results are then used to train artificial neural network models to predict the curvature and solid cooling rate of the cantilever beam for any combination of the laser power and scanning speed within the input design space. The resulting processing maps are screened in accordance with three quality criteria, namely, the part density, the radius of curvature and the solid cooling rate, to determine the optimal processing parameters for the LPBF process. Findings It is shown that the parameters lying within the optimal region of the processing map reduce the curvature of the cantilever beam by 17.9% and improve the density by as much as 99.97%. Originality/value The present study proposes a computational framework, which could find the parameters that not only yield the lowest distortion but also produce fully dense components in the LPBF process.


2021 ◽  
Vol 871 ◽  
pp. 277-283
Author(s):  
Chun Yan Yang ◽  
Yun Hao ◽  
Bozhe Wang ◽  
Hai Yuan ◽  
Liu Hui Li

A picosecond laser in spin-cutting mode was used to drill 500μm diameter microholes on 150μm thick aluminium nitride ceramic. The effects of laser processing parameters such as the laser power, scanning speed, and defocus amount on the microhole quality were studied. The results show that as the laser power increases, the inlet and outlet diameters of the holes increase, the taper decreases slightly, and the thickness of the recast layer decreases evidently. The scanning speed has no obvious effect on the diameter and taper of the hole; however, the hole can not be drilled through when the speed is too large. Positive defocus can effectively reduce the taper of the hole. Under 28.5W laser power, 400Hz frequency, 200mm/s scanning speed, and zero defocus amount conditions, high-quality microholes with a taper of 0.85° were obtained.


2018 ◽  
Author(s):  
Mingsan Xu ◽  
Kerstern Malama ◽  
Bingbing Li

Laser cladding utilizes a high-powered laser to fuse and solidify the metal powders, which results in a complex change of physical and mechanical properties. Selection of parameters and creative structure design are critical for laser cladding technology. High-speed steel is cladded on the base metal 40Cr by diode laser to investigate the influence of curvature radius, scanning speed, gas flow and laser power. The micro hardness and residue stress are tested while the microstructure is analyzed. According to analysis of the process parameters in orthogonal experiment, the optimal parameters are: curvature radius 100 mm, laser power 1200W, gas flow 1000 L/h, and scanning speed 16 mm/s. Under the optimal parameters, the microstructure and grid is uniform and the grain growth is along the same direction.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4849
Author(s):  
T. Minasyan ◽  
S. Aydinyan ◽  
E. Toyserkani ◽  
I. Hussainova

Mo(Si1−x,Alx)2 composites were produced by a pulsed laser reactive selective laser melting of MoSi2 and 30 wt.% AlSi10Mg powder mixture. The parametric study, altering the laser power between 100 and 300 W and scan speed between 400 and 1500 mm·s−1, has been conducted to estimate the effect of processing parameters on printed coupon samples’ quality. It was shown that samples prepared at 150–200 W laser power and 400–500 mm·s−1 scan speed, as well as 250 W laser power along with 700 mm·s−1 scan speed, provide a relatively good surface finish with 6.5 ± 0.5 µm–10.3 ± 0.8 µm roughness at the top of coupons, and 9.3 ± 0.7 µm–13.2 ± 1.1 µm side surface roughness in addition to a remarkable chemical and microstructural homogeneity. An increase in the laser power and a decrease in the scan speed led to an apparent improvement in the densification behavior resulting in printed coupons of up to 99.8% relative density and hardness of ~600 HV1 or ~560 HV5. The printed parts are composed of epitaxially grown columnar dendritic melt pool cores and coarser dendrites beyond the morphological transition zone in overlapped regions. An increase in the scanning speed at a fixed laser power and a decrease in the power at a fixed scan speed prohibited the complete single displacement reaction between MoSi2 and aluminum, leading to unreacted MoSi2 and Al lean hexagonal Mo(Si1−x,Alx)2 phase.


2010 ◽  
Vol 443 ◽  
pp. 353-358 ◽  
Author(s):  
Harshad A. Sonawane ◽  
Suhas S. Joshi

The ball end milling process, commonly used for generating complex shapes, involves continuous variation in the uncut chip dimensions, which depends on the cutter geometry and the machining parameters. The proposed analytical model evaluates the undeformed and the deformed chip dimensions including chip length, width and thickness. The undeformed and deformed chip dimensions, is a function of cutter rotation angle, instantaneous cutter radius, helix angle, and other processing parameters. The surface quality, in the form of surface roughness, during high-speed ball end milling of Inconel 718 is also analysed in this paper.


2010 ◽  
Vol 426-427 ◽  
pp. 26-29 ◽  
Author(s):  
X.J. Wu ◽  
Feng Xu ◽  
Dun Wen Zuo ◽  
Wen Zhuang Lu ◽  
M. Wang

Chemical vapor deposited (CVD) diamond film has a series of outstanding properties. However, it can not be easily machined by conventional technologies available currently for its high hardness and stability. Laser processing diamond film method can be an efficient way to process diamond film because of its high energy density. The mechanisms of laser processing diamond film are thermal oxidation, graphitization and evaporative ablation of graphite. Temperature distribution is of great importance to understand these complex phenomena taking place during the process because different temperatures lead to different physical and chemical changes of diamond. In this paper, the finite element method (FEM) software ANSYS is applied to calculate the temperature distribution. The relation between etching depth and laser machining parameters (laser power and scanning speed) is presented. The proper parameter ranges of laser power and scanning speed for a certain etching depth is also investigated with this method.


2014 ◽  
Vol 915-916 ◽  
pp. 1000-1004 ◽  
Author(s):  
Xiao Hui Song ◽  
Yu Sheng Shi ◽  
Ping Hui Song ◽  
Qing Song Wei ◽  
Wei Li

Selective Laser Sintering (SLS) has been successfully and broadly applied in biomedical engineering to fabricated biomedical part. And the porosity and microstructure of part can be controlled by main sintered parameters. This research focused aliphatic Polycarbonate (PC) sintered with SLS. According to the orthogonal experiment, the effect of laser power energy and interaction between main sintered parameters on porosity has been studied. Then the micro structure and mechanical properties of specimens sintered with the best optimal parameters have been analyzed.


Sign in / Sign up

Export Citation Format

Share Document