scholarly journals Prediction of Dynamic Elastic Properties for Mishrif formation in West Qurna-1 oil field: an experimental work

Author(s):  
ahmed wattan ◽  
Mohammed AL‑Jawad

Abstract Shear and compressional wave velocities are useful for drilling operations, the exploration of reservoirs, stimulation processes, and hydraulic fracturing. An ultrasonic device will be used in this investigation to anticipate and analyze the elastic characteristics of carbonate rocks. At the summit of the field, the well WQ1-20 obtained samples of the Mishrif formation from a variety of various depths. The number of samples taken from the well is nine from different units whereas the number of samples taken from the main unit (MB2) was five. The relations between the elastic properties for the carbonate rocks with P-and S-waves were defined. The relations between Vp and Vs with elastic properties were defined by applied Regression analysis. The results showed that a linear relationship between P-and S-wave velocities with the elastic properties of the carbonate rocks. It is found that the relationship between Vp and Young's modulus (E) is R2 equal to 0.979 while the relationship between Vs and Young's modulus (E) is R2 equal to 0.925. The relationship between shear modulus and Vs is good in comparison with Vp where the values of R2 were 0.985 and 0.94 respectively. R2 values for the Bulk modulus and Lame's constant of Vp are 0.925 and 0.6, respectively, while the values for Vs are 0.925 and 0.6 for the latter. The relation between Vp/Vs ratio with Poisson’s ratio showed a good R2 with a value of 0.97. When it comes to predicting the dynamic elastic characteristics of a material, the ultrasonic approach may be regarded as a cost-effective, easy, and non-destructive method.

2017 ◽  
Vol 5 (1) ◽  
pp. SB69-SB80 ◽  
Author(s):  
Jingjing Xu ◽  
Maojin Tan ◽  
Xiaochang Wang ◽  
Chunping Wu

Estimation of S-wave velocity is one of the most critical steps for prestack seismic inversion. Based on the petrophysical model of fractured carbonate rocks, theoretical methods are firstly investigated for estimating P- and S-wave velocities in the presence of fractures. Then, the methods of calculating elastic properties in fractured carbonate rocks are discussed. The mineral concentration, total porosity, and fracture porosity from core X-ray diffraction and routine core measurements or log interpretation results are used to estimate the P- and S-wave velocities. In the given carbonate rock model, the elastic properties of carbonate rocks with different porosity and fractures are calculated. Two field tests prove that the proposed new method is effective and accurate. Furthermore, the model is useful for fluid identification, which is one of the most outstanding problems for carbonate reservoir description. The simulation results suggest that the larger the fracture porosity is, the easier fluid typing. In Tahe Oilfield, the elastic properties of different fluid zones indicate that bulk modulus and Young’s modulus are more sensitive to fluid than shear modulus, the Lamé constant, and Poisson’s ratio.


Geophysics ◽  
1936 ◽  
Vol 1 (3) ◽  
pp. 347-352 ◽  
Author(s):  
J. M. Ide

Laboratory determinations of Young’s modulus, rigidity, and compressibility were made on a set of representative rock samples. These measurements are compared with the theoretical relations between the elastic constants of an isotropic medium. Computed longitudinal and transverse wave velocities are compared with direct field measurements by Leet in granite and norite. Agreement is within 5 per cent for norite, and 20 per cent for granite.


2013 ◽  
Vol 53 (1) ◽  
pp. 245 ◽  
Author(s):  
Yazeed Altowairqi ◽  
Reza Rezaee ◽  
Milovan Urosevic ◽  
Claudio Delle Piane

While the majority of natural gas is produced from conventional sources, there is significant growth from unconventional sources, including shale-gas reservoirs. To produce gas economically, candidate shale typically requires a range of characteristics, including a relatively high total organic carbon (TOC) content, and it must be gas mature. Mechanical and dynamic elastic properties are also important shale characteristics that are not well understood as there have been a limited number of investigations of well-preserved samples. In this study, the elastic properties of shale samples are determined by measuring wave velocities. An array of ultrasonic transducers are used to measure five independent wave velocities, which are used to calculate the elastic properties of the shale. The results indicated that for the shale examined in this research, P- and S-wave velocities vary depending on the isotropic stress conditions with respect to the fabric and TOC content. It was shown that the isotropic stress significantly impacts velocity. In addition, S-wave anisotropy was significantly affected by increasing stress anisotropy. Stress orientation, with respect to fabric orientation, was found to be an important influence on the degree of anisotropy of the dynamic elastic properties in the shale. Furthermore, the relationship between acoustic impedance (AI) and TOC was established for all the samples.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. MR45-MR59 ◽  
Author(s):  
Jean-Baptiste Regnet ◽  
Jérôme Fortin ◽  
Aurélien Nicolas ◽  
Matthieu Pellerin ◽  
Yves Guéguen

We have provided new insights into the controlling factors of elastic properties in continental carbonate rocks and introduced an applicable model for acoustic-velocity predictions in such a medium. Petrophysical properties (porosity, permeability, P- and S-wave velocities) from laboratory measurements have been coupled with thin-section observations and characterizations, and X-ray diffraction (XRD) analyses. A major achievement is the establishment of the link between the mineralogical composition and the P- and S-wave velocity dispersion at a given porosity. This reflects the subtle interplay between physicochemical and biological precipitation of continental carbonates, which can also be associated with a strong influence of detrital mineralogical inputs. The result is a mineralogical commixture, coupled to a wide array of pore types inherited from the strong ability of carbonate rocks to undergo diagenetic alteration. The proposed model takes into account the elastic moduli of the minerals, porosity, and pore shape, and it is based on the effective medium theory. We have considered the case in which the medium contained randomly oriented pores with different aspect ratios. Overall, the fit between the predicted trends and the experimental data is fairly good, especially for calcite and quartz matrix mineralogy. The results are even better when considering mineralogy inferred from XRD data, although in some case, and despite the aspect ratio variation in both simulations, the model fails to accurately predict the P-wave velocities. This probably means that another factor is at stake beside mineralogy. This can be explained by the limitation of the effective medium approach, which oversimplifies the reality and fails to account for the variability of some aspect ratio from one inclusion to another.


1947 ◽  
Vol 25a (2) ◽  
pp. 88-95 ◽  
Author(s):  
T. D. Northwood

By measuring the velocity of various types of elastic waves in a solid it is possible to deduce Young's modulus and Poisson's ratio. Longitudinal, extensional, and Rayleigh wave velocities were measured in ice, the first by resonance in a rod and the other two by a pulsing technique. The value obtained for Young's modulus was 9.8 × 1010 dynes per cm.2 and for Poisson's ratio was 0.33.


2020 ◽  
pp. 1672-1683
Author(s):  
Salman Z. Khorshid ◽  
Munther D. Al-Awsi ◽  
Emad H. Kadhim

The aim of the current  study is to determine the elastic properties  of carbonate rocks using ultrasonic method.  Forty rock samples of  Anah formation  were collected at  different depths from  four wells drilled at the study area . The relationship between wave velocities and elastic properties of rocks was defined. Regression analyses to define these relations were applied. The results indicate that the elastic properties of the rocks show a linear relationship with both P- and S-wave velocities. The best relationship was obtained between both Young's modulus and Shear modulus with Vs in the determination of the coefficient ( R2  ), with values of 0.91 and 0.94,  respectively.  Bulk modulus and  Lame’s constant were  better correlated with Vp than with Vs  in the determination of R2,with values of 0.92 and 0.83, respectively. Poisson’s ratio  showed a good correlation using the ratio of Vp/Vs in the determination of R2, with a value of 0.81. The main output of this  study shows that the ultrasonic method is a useful tool for the prediction of the elastic dynamic properties of sample rocks and that it can be used as an economical , simple and  non- destructive method, especially for engineering purposes.    


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3010
Author(s):  
Raphael Lamprecht ◽  
Florian Scheible ◽  
Marion Semmler ◽  
Alexander Sutor

Ultrasound elastography is a constantly developing imaging technique which is capable of displaying the elastic properties of tissue. The measured characteristics could help to refine physiological tissue models, but also indicate pathological changes. Therefore, elastography data give valuable insights into tissue properties. This paper presents an algorithm that measures the spatially resolved Young’s modulus of inhomogeneous gelatin phantoms using a CINE sequence of a quasi-static compression and a load cell measuring the compressing force. An optical flow algorithm evaluates the resulting images, the stresses and strains are computed, and, conclusively, the Young’s modulus and the Poisson’s ratio are calculated. The whole algorithm and its results are evaluated by a performance descriptor, which determines the subsequent calculation and gives the user a trustability index of the modulus estimation. The algorithm shows a good match between the mechanically measured modulus and the elastography result—more precisely, the relative error of the Young’s modulus estimation with a maximum error 35%. Therefore, this study presents a new algorithm that is capable of measuring the elastic properties of gelatin specimens in a quantitative way using only the image data. Further, the computation is monitored and evaluated by a performance descriptor, which measures the trustability of the results.


2018 ◽  
Vol 233 ◽  
pp. 00025
Author(s):  
P.V. Polydoropoulou ◽  
K.I. Tserpes ◽  
Sp.G. Pantelakis ◽  
Ch.V. Katsiropoulos

In this work a multi-scale model simulating the effect of the dispersion, the waviness as well as the agglomerations of MWCNTs on the Young’s modulus of a polymer enhanced with 0.4% MWCNTs (v/v) has been developed. Representative Unit Cells (RUCs) have been employed for the determination of the homogenized elastic properties of the MWCNT/polymer. The elastic properties computed by the RUCs were assigned to the Finite Element (FE) model of a tension specimen which was used to predict the Young’s modulus of the enhanced material. Furthermore, a comparison with experimental results obtained by tensile testing according to ASTM 638 has been made. The results show a remarkable decrease of the Young’s modulus for the polymer enhanced with aligned MWCNTs due to the increase of the CNT agglomerations. On the other hand, slight differences on the Young’s modulus have been observed for the material enhanced with randomly-oriented MWCNTs by the increase of the MWCNTs agglomerations, which might be attributed to the low concentration of the MWCNTs into the polymer. Moreover, the increase of the MWCNTs waviness led to a significant decrease of the Young’s modulus of the polymer enhanced with aligned MWCNTs. The experimental results in terms of the Young’s modulus are predicted well by assuming a random dispersion of MWCNTs into the polymer.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 968
Author(s):  
Fumitada Iguchi ◽  
Keisuke Hinata

The elastic properties of 0, 10, 15, and 20 mol% yttrium-doped barium zirconate (BZY0, BZY10, BZY15, and BZY20) at the operating temperatures of protonic ceramic fuel cells were evaluated. The proposed measurement method for low sinterability materials could accurately determine the sonic velocities of small-pellet-type samples, and the elastic properties were determined based on these velocities. The Young’s modulus of BZY10, BZY15, and BZY20 was 224, 218, and 209 GPa at 20 °C, respectively, and the values decreased as the yttrium concentration increased. At high temperatures (>20 °C), as the temperature increased, the Young’s and shear moduli decreased, whereas the bulk modulus and Poisson’s ratio increased. The Young’s and shear moduli varied nonlinearly with the temperature: The values decreased rapidly from 100 to 300 °C and gradually at temperatures beyond 400 °C. The Young’s modulus of BZY10, BZY15, and BZY20 was 137, 159, and 122 GPa at 500 °C, respectively, 30–40% smaller than the values at 20 °C. The influence of the temperature was larger than that of the change in the yttrium concentration.


Holzforschung ◽  
2002 ◽  
Vol 56 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Ugai Watanabe ◽  
Minoru Fujita ◽  
Misato Norimoto

Summary The relationship between transverse Young's moduli and cell shapes in coniferous early wood was investigated using cell models constructed by two dimensional power spectrum analysis. The calculated values of tangential Young's modulus qualitatively explained the relationship between experimental values and density as well as the difference in experimental values among species. The calculated values of radial Young's modulus for the species having hexagonal cells agreed well with the experimental values, whereas, for the species having square cells, the calculated values were much larger than the experimental values. This result was ascribed to the fact that the bending moment on the radial cell wall of square cell models was calculated to be small. It is suggested that the asymmetrical shape of real wood cells or the behavior of nodes during ell deformation is an important factor in the mechanism of linear elastic deformation of wood cells.


Sign in / Sign up

Export Citation Format

Share Document