scholarly journals Clinacanthus Nutans Induces Antiproliferative and Apoptosis in Human Breast Cancer Cells Through Targeted Apoptosis Pathway

Author(s):  
Hasni Arsad ◽  
Noor Zafirah Ismail ◽  
Salwani Md S ◽  
Ismail Abiola Adebayo ◽  
Zaleha Md T ◽  
...  

Abstract Clinacanthus nutans dichloromethane fraction (CN-Dcm) extract has previously been proven to suppress breast cancer (MCF7) cell proliferation. Despite this, the molecular mechanisms involved in C. nutans extract-treated MCF7 cells are unknown. Hence, the molecular mechanism of apoptosis in treated MCF7 was investigated in this current study. This study was intended to subfractionate CN-Dcm extract using column chromatography and analysed the treated MCF7 cells using the CellTiter 96® AQueous One Solution Cell Proliferation (MTS) assay, Annexin V/propidium iodide (PI) assay, western blot and reverse transcription-qualitative polymerase chain reaction (RT-qPCR). Out of nine subfraction extracts (SF1 to SF9), SF2 extract strongly inhibited MCF7 cells with the lowest IC50 value (23.51 ± 0.99 µg/mL) and substantially induced apoptosis in the MCF7 cells. SF2 extract significantly downregulated BCL-2 expression and upregulated P53, BAX, BID, BCL-2, caspase-8, caspase-9 and caspase-3 expressions in treated MCF7 cells. Therefore, SF2 extract was analysed using liquid chromatography coupled to quadrupole time–of–flight mass spectrometry (LC-QTOF-MS), which confirmed the presence of bioactive chemical compounds. Thus, it can be concluded that the compounds found in SF2 extract may potentially cause apoptosis in MCF7 cells through intrinsic and extrinsic pathways.

2020 ◽  
Author(s):  
Mariam A. Fouad ◽  
Mohamed M. Sayed-Ahmed ◽  
Etimad A. Huwait ◽  
Hafez F. Hafez ◽  
Abdel-Moneim Mahmoud Osman

Abstract Background: Hormonal receptor positive (HR+) breast cancer is the most commonly diagnosed molecular subtype of breast cancer; which showed good response to doxorubicin (DOX)-based chemotherapy. Eugenol (EUG) and astaxanthin (AST) are natural compounds with proved epigenetic and immunomodulatory effects in several cancer cell lines. This study has been initiated to investigate the molecular mechanism (s) whereby EUG and AST could enhance DOX cytotoxicity in MCF7 cells.Methods: Cytotoxic activity of DOX alone and combined with either 1mM EUG or 40µM AST was performed using sulphorhodamine-B assay in MCF7 cells. Global histones acetylation and some immunological markers were investigated using ELISA, western blotting and quantitative RT-PCR techniques. Functional assay of multidrug resistance was performed using rhodamine 123 and Hoechst 3342 dyes. Flow cytometry with annexin V and propidium iodide were used to assess the change in cell cycle and apoptosis along with the expression of some differentiation, apoptosis and autophagy proteins. Results: DOX alone resulted in concentration-dependent cytotoxicity with IC50 of 0.5 μM. Both EUG and AST significantly increased DOX cytotoxicity which is manifested as a significant decrease in DOX IC50 from 0.5 μM to 0.088 μM with EUG and to 0.06 μM with AST. Combinations of DOX with 1mM EUG or 40 µM AST significantly increased the level of histones acetylation and histone acetyl transferase expression, while reduced the expression of aromatase and epidermal growth factor receptor (EGFR) when compared with 0.25 µM DOX alone. Also both combinations showed higher uptake of rhodamine but lower of Hoechst stains, along with increased the percentage of caspase 3, and decreased the expression of CK7 and LC3BI/II ratio. EUG combination induced IFγ but reduced TNFα causing shifting of cells from G2/M to S and G0/ G1 phases. Combination of DOX with EUG induced apoptosis through the higher BAX/ BCl2 ratio, while with AST was through the increase in caspase 8 expressions. Conclusion: EUG and AST potentiated the anticancer activity of DOX through epigenetic histones acetylation along with the immunonomodulation of different apoptotic approaches in MCF7 cells.


2020 ◽  
Author(s):  
Mariam A. Fouad ◽  
Mohamed M. Sayed-Ahmed ◽  
Etimad A. Huwait ◽  
Hafez F. Hafez ◽  
Abdel-Moneim Osman

Abstract Background: Hormonal receptor positive (HR+) breast cancer is the most commonly diagnosed molecular subtype of breast cancer; which showed good response to doxorubicin (DOX)-based chemotherapy. Eugenol (EUG) and astaxanthin (AST) are natural compounds with proved epigenetic and immunomodulatory effects in several cancer cell lines. This study has been initiated to improve the cytotoxic activity and reduce resistance of DOX through combination with EUG and AST in MCF7 cells.Methods: Cytotoxic activity of DOX alone and combined with either 1mM EUG or 40µM AST was performed using sulphorhodamine-B assay in MCF7 cells. Global histones acetylation and some immunological markers were investigated using ELISA, western blotting and quantitative RT-PCR techniques. Functional assay of multidrug resistance was performed using rhodamine 123 and Hoechst 3342 dyes. Flow cytometry with annexin V and propidium iodide were used to assess the change in cell cycle and apoptosis along with the expression of some differentiation, apoptosis and autophagy proteins. Results: DOX alone resulted in concentration-dependent cytotoxicity with IC50 of 0.5 μM. Both EUG and AST significantly increased DOX cytotoxicity which is manifested as a significant decrease in DOX IC50 from 0.5 μM to 0.088 μM with EUG and to 0.06 μM with AST. Combinations of DOX with 1mM EUG or 40 µM AST significantly increased the level of histones acetylation and histone acetyl transferase expression, while reduced the expression of aromatase and epidermal growth factor receptor (EGFR) when compared with 0.25 µM DOX alone. Also both combinations showed higher uptake of rhodamine but lower of Hoechst stains, along with increased the percentage of caspase 3, and decreased the expression of CK7 and LC3BI/II ratio. EUG combination induced IFγ but reduced TNFα causing shifting of cells from G2/M to S and G0/ G1 phases. Combination of DOX with EUG induced apoptosis through the higher BAX/ BCl2 ratio, while with AST was through the increase in caspase 8 expressions. Conclusion: EUG and AST potentiated the anticancer activity of DOX through epigenetic histones acetylation along with the immunonomodulation of different apoptotic approaches in MCF7 cells.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Mariam A. Fouad ◽  
Mohamed M. Sayed-Ahmed ◽  
Etimad A. Huwait ◽  
Hafez F. Hafez ◽  
Abdel-Moneim M. Osman

Abstract Background Hormonal receptor positive (HR+) breast cancer is the most commonly diagnosed molecular subtype of breast cancer; which showed good response to doxorubicin (DOX)-based chemotherapy. Eugenol (EUG) and astaxanthin (AST) are natural compounds with proved epigenetic and immunomodulatory effects in several cancer cell lines. This study has been initiated to investigate the molecular mechanism (s) whereby EUG and AST could enhance DOX cytotoxicity in MCF7 cells. Methods Cytotoxic activity of DOX alone and combined with either 1 mM EUG or 40 μM AST was performed using sulphorhodamine-B assay in MCF7 cells. Global histones acetylation and some immunological markers were investigated using ELISA, western blotting and quantitative RT-PCR techniques. Functional assay of multidrug resistance was performed using rhodamine 123 and Hoechst 3342 dyes. Flow cytometry with annexin V and propidium iodide were used to assess the change in cell cycle and apoptosis along with the expression of some differentiation, apoptosis and autophagy proteins. Results DOX alone resulted in concentration-dependent cytotoxicity with IC50 of 0.5 μM. Both EUG and AST significantly increased DOX cytotoxicity which is manifested as a significant decrease in DOX IC50 from 0.5 μM to 0.088 μM with EUG and to 0.06 μM with AST. Combinations of DOX with 1 mM EUG or 40 μM AST significantly increased the level of histones acetylation and histone acetyl transferase expression, while reduced the expression of aromatase and epidermal growth factor receptor (EGFR) when compared with 0.25 μM DOX alone. Also both combinations showed higher uptake of rhodamine but lower of Hoechst stains, along with increased the percentage of caspase 3, and decreased the expression of CK7 and LC3BI/II ratio. EUG combination induced IFγ but reduced TNFα causing shifting of cells from G2/M to S and G0/ G1 phases. Combination of DOX with EUG induced apoptosis through the higher BAX/ BCl2 ratio, while with AST was through the increase in caspase 8 expressions. Conclusion EUG and AST potentiated the anticancer activity of DOX through epigenetic histones acetylation along with the immunonomodulation of different apoptotic approaches in MCF7 cells.


2020 ◽  
Author(s):  
Mariam A. Fouad ◽  
Mohamed M. Sayed-Ahmed ◽  
Etimad A. Huwait ◽  
Hafez F. Hafez ◽  
Abdel-Mneim M. Osman

Abstract Background: Hormonal receptor positive (HR+) breast cancer is the most commonly diagnosed molecular subtype of breast cancer; which showed good response to doxorubicin (DOX)-based chemotherapy. Eugenol (EUG) and astaxanthin (AST) are natural compounds with proved epigenetic and immunomodulatory effects in several cancer cell lines. This study has been initiated to improve the cytotoxic activity and reduce resistance of DOX through combination with EUG and AST in MCF7 cells.Methods: Cytotoxic activity of DOX alone and combined with either 1mM EUG or 40µM AST was performed using sulphorhodamine-B assay in MCF7 cells. Global histones acetylation and some immunological markers were investigated using ELISA, western blotting and quantitative RT-PCR techniques. Functional assay of multidrug resistance was performed using rhodamine 123 and Hoechst 3342 dyes. Flow cytometry with annexin V and propidium iodide were used to assess the change in cell cycle and apoptosis along with the expression of some differentiation, apoptosis and autophagy proteins. Results: DOX alone resulted in concentration-dependent cytotoxicity with IC50 of 0.5 μM. Both EUG and AST significantly increased DOX cytotoxicity which is manifested as a significant decrease in DOX IC50 from 0.5 μM to 0.088 μM with EUG and to 0.06 μM with AST. Combinations of DOX with 1mM EUG or 40 µM AST significantly increased the level of histones acetylation and histone acetyl transferase expression, while reduced the expression of aromatase and epidermal growth factor receptor (EGFR) when compared with 0.25 µM DOX alone. Also both combinations showed higher uptake of rhodamine but lower of Hoechst stains, along with increased the percentage of caspase 3, and decreased the expression of CK7 and LC3BI/II ratio. EUG combination induced IFγ but reduced TNFα causing shifting of cells from G2/M to S and G0/ G1 phases. Combination of DOX with EUG induced apoptosis through the higher BAX/ BCl2 ratio, while with AST was through the increase in caspase 8 expressions. Conclusion: EUG and AST potentiated the anticancer activity of DOX through epigenetic histones acetylation along with the immunonomodulation of different apoptotic approaches in MCF7 cells.


Author(s):  
Chuan Chen ◽  
Ziyue Zhao ◽  
Qian Dong ◽  
XueHui Gao ◽  
Huibin Xu ◽  
...  

Background:: Xanthones are a class of heterocyclic natural products, which are promising sources of anticancer leads. Phomoxanthone B(PXB)and Phomoxanthone A(PXA)are xanthone dimers. PXA is well studied as an anti-cancer agent, but PXB is not. In our study, PXB was isolated from the endophytic fungus Phomopsis sp. By254. Objective:: The purpose of this study was to identify the underlying anti-tumor mechanisms of PXB in breast cancer MCF7 cell line. Methods:: Apoptosis, cell cycle, proliferation, invasion and migration assays were used to assess the antitumor activity of PXB. RNA sequencing was used to analyze the effect of PXB treatment on gene expression in MCF7 cells. Results:: PXB showed cytotoxicity toward a variety of tumor cells, especially MCF7 cells. PXB inhibited the migration and invasion, arrested cell cycle at G2/M phase and induced apoptosis associated with caspase-3 activation in MCF7 cells. The detailed transcriptome analysis revealed that PXB affected several pathways related to tumorigenesis, metabolisms-, and oxidative phosphorylation in MCF7 cells. KEGG transcriptome analysis revealed that PXB upregulated pro-survival signal pathways such as MAPK, PI3K-AKT and STAT3 pathways. We found that PXB also significantly upregulated the expression of IL24, DDIT3 and XAF1, which may contribute to PXB-induced apoptosis. We further found that PXB may downregulate oxidative phosphorylation by decreasing the expression of electron transport chain genes, especially MT-ND1, which is a potential unfavorable prognostic marker for ER-positive breast cancer. Conclusion:: PXB exerts strong cytotoxicity against human tumor cells and has a potential for ER-positive breast cancer treatment.


2022 ◽  
Vol 12 (2) ◽  
pp. 273-278
Author(s):  
Daqing Jiang ◽  
Xianxin Xie ◽  
Cong Wang ◽  
Weijie Li ◽  
Jianjun He

Our study intends to assess the relationship between exosomes derived from bone marrow mesenchymal stem cells (BMSC-exo) and breast cancer. BMSC-exo were isolated and characterized by transmission electron microscopy. After transfection of BMSCs with miR-204 inhibitor, breast cancer cells were incubated with BMSC-exo followed by analysis of cell proliferation by CCK-8 assay, cell apoptosis by flow cytometry, and expression of apoptosis-related protein and NF-κB signaling by western blot. The co-culture of BMSC-exo with breast cancer cells enhanced miR-204 transcription, inhibited cell proliferation and induced apoptosis. Further, BMSC-exo accelerated apoptosis as demonstrated by the increased level of Bax and casepase-3 and decreased Bcl-2 expression, as well as reduced NF-κB signaling activity. But knockdown of miR-204 abolished the effect of BMSC-exo on apoptosis and proliferation with NF-κB signaling activation. In conclusion, miR-204 from BMSC-exo restrains growth of breast cancer cell and might be a novel target for treating breast cancer.


2021 ◽  
Author(s):  
Demet Cansaran Duman ◽  
Gamze Guney Eskiler ◽  
Betül Çolak ◽  
Elif Sozen Kucukkara

Abstract Lichen secondary metabolites have drawn considerable attention in recent years due to limitations of current treatment options. Vulpinic acid (VA) obtained from Letharia vulpina lichen species exerts a remarkable cytotoxic effect on different cancer types. However, the therapeutic efficacy of VA in metastatic prostate cancer (mPC) cells has not been investigated. In the present study, we aimed to identify VA-mediated cytotoxicity in PC-3 mPC cells compared with control cells. After identification of the cytotoxic concentrations of VA, VA induced apoptosis was analyzed by Annexin V, cell cycle, acridine orange and propidium iodide staining and RT-PCR analysis. Our findings showed that VA significantly decreased the viability of PC-3 cells (p < 0.01) and caused a considerable early apoptotic effect through G0/G1 arrest, nuclear bleebing and the activation of particularly initiator caspases. Therefore, VA may be a potential treatment option for mPC patients. However, the underlying molecular mechanisms of VA-induced apoptosis with advanced analysis should be further performed.


2021 ◽  
Author(s):  
Romina Delalat ◽  
Seyed Ataollah Sadat Shandiz ◽  
Bahareh Pakpour

Abstract The present research was done to investigate the anticancer properties of silver nanoparticles (AgNPs) fabricated using bioactive extract of Onopordum acanthium L. (AgNPs-OAL) against breast cancer cell MDA_MB231 in vitro. The determination studies of AgNPs-OAL were confirmed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) analysis. Interestingly, FESEM image observed the spherical shape of AgNPs-OAL with the range of 1–100 nm. As AgNP-OAL exhibited significant cytotoxicity properties on breast cancer MDA_MB231 cells with IC50 values of 66.04 μg/mL, while lowing toxicity toward normal human embryonic kidney 293 (HEK293) cells with IC50 values of 101.04 μg/mL was evaluated. Further, up-regulation of apoptotic Bax and CAD genes expressions were confirmed by quantitative real-time reverse transcription-PCR (qRT-PCR) technique results. Moreover, enhanced cell cycle population (sub-G1), annexin V/PI staining, acridine orange and ethidium bromide (AO/EB) staining, Hoescht 33258 dye, and generation of reactive oxygen species (ROS) observed in AgNP-OAL-treated MDA_MB231 cancer cells. The green-synthesized AgNP-OAL has promising anticancer efficiency that can trigger apoptosis pathway in the MDA_MB231 breast cancer cells.


Nutrients ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 624 ◽  
Author(s):  
So Koh ◽  
Jeong Moon ◽  
Tatsuya Unno ◽  
Somi Cho

Resistance to both chemotherapy and radiation therapy is frequent in triple-negative breast cancer (TNBC) patients. We established treatment-resistant TNBC MDA-MB-231/IR cells by irradiating the parental MDA-MB-231 cells 25 times with 2 Gy irradiation and investigated the molecular mechanisms of acquired resistance. The resistant MDA-MB-231/IR cells were enhanced in migration, invasion, and stem cell-like characteristics. Pathway analysis by the Database for Annotation, Visualization and Integrated Discovery revealed that the NF-κB pathway, TNF signaling pathway, and Toll-like receptor pathway were enriched in MDA-MB-231/IR cells. Among 77 differentially expressed genes revealed by transcriptome analysis, 12 genes involved in drug and radiation resistance, including interferon-induced protein with tetratricopeptide repeats 2 (IFIT2), were identified. We found that baicalein effectively reversed the expression of IFIT2, which is reported to be associated with metastasis, recurrence, and poor prognosis in TNBC patients. Baicalein sensitized radio- and chemoresistant cells and induced apoptosis, while suppressing stem cell-like characteristics, such as mammosphere formation, side population, expression of Oct3/4 and ABCG2, and CD44highCD24low population in MDA-MB-231/IR cells. These findings improve our understanding of the genes implicated in radio- and chemoresistance in breast cancer, and indicate that baicalein can serve as a sensitizer that overcomes treatment resistance.


Sign in / Sign up

Export Citation Format

Share Document