scholarly journals Possibilities of Using Physical Modeling With Soft Materials to Analyze and Optimize Metal Forming Processes

Author(s):  
Marek Hawryluk ◽  
Maciej Suliga ◽  
Mateusz Więclaw

Abstract The study presents the concept of physical modelling together with the characterization of the modelling materials as well as the possibilities of applying this type of physical simulation methods for the analysis, design and optimization of industrial metal forming processes. The paper discusses the crucial similarity conditions between the physical model and the real process necessary to transform the results into industrial processes. Physical modelling is one of the most popular as well as cheapest methods of analyzing metal plastic forming processes and it can constitute an easy independent verifying tool. It can also be a competitive alternative or supplementation, or a quick verification, of the popular yet relatively expensive methods based on a broadly understood mathematical apparatus, e.g. the finite element method or various types of computer science techniques. The method provides the possibility to define the stress and deformation distribution, estimate the force parameters of the given process as well as localize the dead zones and material flow errors. On the example of a forward extrusion process, the study demonstrates the effect of matching the model material to two metallic materials: annealed aluminum and reinforced aluminum. Additionally, for reinforced aluminum, numerical modelling was performed, which made it possible to determine e.g.: the force parameters and the material flow manner. Next, based on physical modelling, verification through numerical modelling was made of the boundary and tribological conditions, as physical modelling revealed a so-called dead zone in the corner of the die, which had not been recorded in numerical modelling.

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7126
Author(s):  
Łukasz Wójcik ◽  
Zbigniew Pater ◽  
Tomasz Bulzak ◽  
Janusz Tomczak ◽  
Konrad Lis

The article presents the results of model tests with which a comparative analysis of two methods of ball separation during the skew rolling process was carried out. A verification of the results obtained in the physical modelling process with the results obtained in the real process of skew ball rolling was also carried out. During the physical modelling, the effect of changing the ball separation method on the quality of the products obtained, variations in maximum torque values and maximum radial forces were analyzed. In the case of real tests, the results were verified with the results of physical modelling, in which the surface quality and torque values for one of the tool sets were compared. Physical modelling was used to verify the differences between the two methods of ball separation. Commercial plasticine based on synthetic wax from the manufacturer PRIMO was used as a model material for physical analysis. The plasticine used for testing was cooled to 0 °C and the cooling process took 24 h. The tools used for the physical modelling were 3D printed and the material used was ABS. The method of physical modelling using plasticine as a model material allows for a correct analysis of hot metal forming processes.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Łukasz Wójcik ◽  
Konrad Lis ◽  
Zbigniew Pater

Abstract This paper presents results of plastometric tests for plasticine, used as material for physical modelling of metal forming processes. The test was conducted by means of compressing by flat dies of cylindrical billets at various temperatures. The aim of the conducted research was comparison of yield stresses and course of material flow curves. Tests were made for plasticine in black and white colour. On the basis of the obtained experimental results, the influence of forming parameters change on flow curves course was determined. Sensitivity of yield stresses change in function of material deformation, caused by forging temperature change within the scope of 0&C ÷ 20&C and differentiation of strain rate for ˙ɛ = 0.563; ˙ɛ = 0.0563; ˙ɛ = 0.0056s−1,was evaluated. Experimental curves obtained in compression test were described by constitutive equations. On the basis of the obtained results the function which most favourably describes flow curves was chosen.


2007 ◽  
Vol 42 (7) ◽  
pp. 519-527 ◽  
Author(s):  
S J Yuan ◽  
J Zhang ◽  
Z. B He

A new method for measurement of plastic strain inside a deforming body is advanced and validated through a simple cylinder upsetting experiment. It is also applied to a ring for demonstrating this method in a ring compression test. The experimental results and numerical simulation show good agreement. In contrast with other physical modelling methods, this method utilizes the real metal for a sensor and workpiece, rather than using substitute materials, and can observe and measure material flow and plastic strain inside the specimen without splitting it before deformation. It can be used to study material flow and to predict strain distribution in general bulk metal-forming processes such as upsetting, extrusion, and die forging. It is also useful for verification of the numerical simulation methods when the material model and the processing parameters were uncertain and/or not easily verified.


2021 ◽  
Author(s):  
Manuel Reck ◽  
Marion Merklein

Due to the ongoing technological development, the demand for geometrically complicated high performance parts with great functional density is increasing. Often, the use of sheet metal is a beneficial approach in manufacturing technology to meet the requirements on components regarding material strength and lightweight construction goals. The forming of therefore required complex sheet metal part geometries with integrated functional elements cause the need for a three dimensional material flow. Sheet-bulk metal forming, characterized by the application of bulk forming operations on sheet metals, is a suitable approach to produce such components. A challenge is the material flow control, resulting in an insufficient die filling of the functional elements. The use of tailored blanks with a defined sheet thickness distribution is an auspicious approach to face this challenge in subsequent forming processes. In the presented work, semi-finished products with a continuous thickness profile manufactured by orbital forming are applied in a full forward extrusion process. By an additional implementation of a heat treatment, the tailored blanks undergo a recrystallization process that causes a softening of the strain hardened material. In this paper, the potential of a heat treatment in the process class of sheet-bulk metal forming is shown by characterizing the geometrical and mechanical properties of the functional components by applying the mild deep drawing steel DC04 with an initial sheet thickness of t0 = 2.0 mm.


2012 ◽  
Vol 622-623 ◽  
pp. 452-456
Author(s):  
Babak Saghafi ◽  
Karen Abrinia

Material flow pattern in extrusion is an important part of the forming process. Understanding and formulating the material flow helps to determine the optimum shape of the die and important details of the process. In this paper, physical modelling of forward extrusion of non-symmetric L-shape section has been carried out to obtain an experimental understanding of the material flow pattern. A theoretical formulation using the conformal mapping theory has also been presented to predict the material flow pattern. The conformal mapping function was set up to translate the non-circular cross-section region of special-shaped products into unit dish. The results for the material flow pattern for the forward extrusion of L shaped profile from circular billets are presented here. In the physical modelling tests plasticine was used as the model material and different coloured layers of plasticine were used to build up the billet. Experimental and theoretical results were compared and good agreements were observed.


1992 ◽  
Vol 114 (1) ◽  
pp. 94-99 ◽  
Author(s):  
S. B. Biner

In this study, a simple and computationally efficient procedure is introduced for determination of the strain distribution during the simulations of forming processes using model material techniques. Forward-backward extrusion process is analyzed by using FEM and the model material techniques. The strain fields obtained from both methods compared favorably with each other. The advantages and the limitations of the techniques are elucidated together with suggested recommendations.


2013 ◽  
Vol 762 ◽  
pp. 261-265 ◽  
Author(s):  
Tanya I. Cherkashina ◽  
Igor Mazur ◽  
Sergey A. Aksenov

Numerical and physical simulation on model samples can provide data for various aspects of metal forming, without resorting to time-consuming and costly full-scale tests. This paper presents examples of modeling of the deformation of a slab with a liquid core. The use of soft reduction can enhance the homogeneity of the structure, which improves the quality of cast billets. Mathematical modeling is described here where the fluid layer is taken into account by the influence of boundary conditions in the crust in the form of ferrostatic pressure, which allows calculation of the intensity of deformation, total deformation and strain. It also provides a novel method for studying the process of soft reduction. It is based on a physical model of the slab consisting of a closed solid shell made of a calibrated lead shot and the Wood's alloy. To simulate the liquid molten metal, the interior of the shell is filled with gelatin. This approach can be applied to further studies on deformation processes and the penetration of deformation into complex metallic systems.


2016 ◽  
Vol 716 ◽  
pp. 114-120 ◽  
Author(s):  
Sebastian Mróz ◽  
Piotr Szota ◽  
Teresa Bajor ◽  
Andrzej Stefanik

The paper presents the results of physical modelling of the plastic deformation of the Mg/Al bimetallic specimens using the Gleeble 3800 simulator. The plastic deformation of Mg/Al bimetal specimens characterized by the diameter to thickness ratio equal to 1 was tested in compression tests. The aim of this work was determination of the range of parameters as temperature and strain rate that mainly influence on the plastic deformation of Mg/Al bars during metal forming processes. The tests were carried out for temperature range from 300 to 400°C for different strain rate values. The stock was round 22.5 mm-diameter with an Al layer share of 28% Mg/Al bars that had been produced using the explosive welding method. Based on the analysis of the obtained testing results it has been found that one of the main process parameters influencing the plastic deformation the bimetal components is the initial stock temperature and strain rate values.


Sign in / Sign up

Export Citation Format

Share Document