scholarly journals AFD-Net: Apple Foliar Disease Multi Classification using Deep Learning on Plant Pathology Dataset

Author(s):  
Anju Yadav ◽  
Udit Thakur ◽  
Rahul Saxena ◽  
Vipin Pal ◽  
Vikrant Bhateja ◽  
...  

Abstract Plant diseases significantly affect the crop, so their identification is very important. Correct identification of these diseases is crucial for establishing a good disease control strategy to avoid time and financial losses. In general, machines can greatly reduce the possibility of human error. In particular, computer vision techniques developed through deep learning have paved a way to detect and diagnose these plant diseases on the leaf. In this work, the model AFD-Net was developed to detect and identify various leaf diseases in apple trees. The dataset is from Kaggle 2020 and 2021 and was financially supported by the Cornell Initiative for Digital Agriculture. A AFD-Net was proposed for leaf disease classification in apple trees and the results of the efficiency of the model are compared with other state-of-the-art deep learning approaches. The results of the experiments in the validation dataset show that the proposed AFD-Net model achieves the highest values compared to other deep learning models in the original and extended datasets with 98.7% accuracy for Plant Pathology 2020 and 92.6% for Plant Pathology 2021.

2019 ◽  
Vol 109 (6) ◽  
pp. 1083-1087 ◽  
Author(s):  
Dor Oppenheim ◽  
Guy Shani ◽  
Orly Erlich ◽  
Leah Tsror

Many plant diseases have distinct visual symptoms, which can be used to identify and classify them correctly. This article presents a potato disease classification algorithm that leverages these distinct appearances and advances in computer vision made possible by deep learning. The algorithm uses a deep convolutional neural network, training it to classify the tubers into five classes: namely, four disease classes and a healthy potato class. The database of images used in this study, containing potato tubers of different cultivars, sizes, and diseases, was acquired, classified, and labeled manually by experts. The models were trained over different train-test splits to better understand the amount of image data needed to apply deep learning for such classification tasks. The models were tested over a data set of images taken using standard low-cost RGB (red, green, and blue) sensors and were tagged by experts, demonstrating high classification accuracy. This is the first article to report the successful implementation of deep convolutional networks, popular in object identification, to the task of disease identification in potato tubers, showing the potential of deep learning techniques in agricultural tasks.


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 939 ◽  
Author(s):  
Marko Arsenovic ◽  
Mirjana Karanovic ◽  
Srdjan Sladojevic ◽  
Andras Anderla ◽  
Darko Stefanovic

Plant diseases cause great damage in agriculture, resulting in significant yield losses. The recent expansion of deep learning methods has found its application in plant disease detection, offering a robust tool with highly accurate results. The current limitations and shortcomings of existing plant disease detection models are presented and discussed in this paper. Furthermore, a new dataset containing 79,265 images was introduced with the aim to become the largest dataset containing leaf images. Images were taken in various weather conditions, at different angles, and daylight hours with an inconsistent background mimicking practical situations. Two approaches were used to augment the number of images in the dataset: traditional augmentation methods and state-of-the-art style generative adversarial networks. Several experiments were conducted to test the impact of training in a controlled environment and usage in real-life situations to accurately identify plant diseases in a complex background and in various conditions including the detection of multiple diseases in a single leaf. Finally, a novel two-stage architecture of a neural network was proposed for plant disease classification focused on a real environment. The trained model achieved an accuracy of 93.67%.


2020 ◽  
pp. 438-442
Author(s):  
Rajasekaran Thangaraj ◽  
Pandiyan P ◽  
Vishnu Kumar Kaliappan ◽  
Anandamurugan S ◽  
Indupriya P

Plant diseases are the essential thing which decreases the quantity as well quality in agricultural field. As a result, the identification and analysis of the diseases are important. The proper classification with least data in deep learning is the most challenging task. In addition, it is tough to label the data manually depending upon the selection criterion. Transfer learning algorithm helps in resolving this kind of problem by means of learning the previous task and then applying capabilities and knowledge to the new task. This work presents the convolution neural network-based model to predict and analysis the potato plant disease using plant village datasets with deep learning algorithms. Transfer learning with feature extraction model is employed to detect the potato plant disease. The results show that improved performance with an accuracy of 98.16%, precision of 98.18%, the recall value of 98.17% and the F1 score value of 98.169 %.


Author(s):  
Sakshi Takkar ◽  
Anuj Kakran ◽  
Veerpal Kaur ◽  
Manik Rakhra ◽  
Manish Sharma ◽  
...  

Plant diseases are spread by a variety of pests, weeds, and pathogens and may have a devastating effect on agriculture, if not handled in a timely manner. Farmers face umpteen challenges from a proper water supply, untimely rain, storage facilities, and several plant diseases. Crops disease is the primary threat and it causes enormous loss to farmers in terms of production and finance. Identifying the disease from several hectares of agricultural land is a very difficult practice even with the presence of modern technology. Accurate and rapid illness prediction for early illness treatment to crops minimizes economical loss to the individual and further proves to be productive for healthy crops. Many studies use modern deep learning approaches to improve the accuracy and performance of object detection and identification systems. The suggested method notifies farmers of different agricultural illnesses, prompting them to take further essential precautions before the disease spreads to the whole agricultural field. The primary objective of this study is to detect the illnesses as soon as they begin to spread on the leaves of the plants. Super-Resolution Convolutional Neural Network (SRCNN) and Bicubic models are employed in the system to identify healthy and diseased leaves with an accuracy of 99.175 % and 99.156 % respectively.


Plant diseases have been a major crisis that is disturbing the food production. So there is a need to provide proper procedures for plant disease detection at its growing age and also during harvesting stage. Timely disease detection can help the user to respond instantly and sketch for some defensive actions. This detection can be carried out without human intervention by using plant leaf images. Deep learning is progressively best for image detection and classification. In this effort, a deep learning based GoogleNet architecture is used for plant diseases detection. The model is trained using public database of 54,306 images of 14 crop varieties and their respective diseases. It achieves 97.82% accuracy for 14 crop types making it capable of further deployment in a crop detection and protection application.


2019 ◽  
Vol 56 (5) ◽  
pp. 1404-1410 ◽  
Author(s):  
Ali Khalighifar ◽  
Ed Komp ◽  
Janine M Ramsey ◽  
Rodrigo Gurgel-Gonçalves ◽  
A Townsend Peterson

Abstract Vector-borne Chagas disease is endemic to the Americas and imposes significant economic and social burdens on public health. In a previous contribution, we presented an automated identification system that was able to discriminate among 12 Mexican and 39 Brazilian triatomine (Hemiptera: Reduviidae) species from digital images. To explore the same data more deeply using machine-learning approaches, hoping for improvements in classification, we employed TensorFlow, an open-source software platform for a deep learning algorithm. We trained the algorithm based on 405 images for Mexican triatomine species and 1,584 images for Brazilian triatomine species. Our system achieved 83.0 and 86.7% correct identification rates across all Mexican and Brazilian species, respectively, an improvement over comparable rates from statistical classifiers (80.3 and 83.9%, respectively). Incorporating distributional information to reduce numbers of species in analyses improved identification rates to 95.8% for Mexican species and 98.9% for Brazilian species. Given the ‘taxonomic impediment’ and difficulties in providing entomological expertise necessary to control such diseases, automating the identification process offers a potential partial solution to crucial challenges.


2017 ◽  
Vol 8 (2) ◽  
pp. 244-249 ◽  
Author(s):  
D. Oppenheim ◽  
G. Shani

Many plant diseases have distinct visual symptoms which can be used to identify and classify them correctly. This paper presents a potato disease classification algorithm which leverages these distinct appearances and the recent advances in computer vision made possible by deep learning. The algorithm uses a deep convolutional neural network training it to classify the tubers into five classes, four diseases classes and a healthy potato class. The database of images used in this study, containing potatoes of different shapes, sizes and diseases, was acquired, classified, and labelled manually by experts. The models were trained over different train-test splits to better understand the amount of image data needed to apply deep learning for such classification tasks.


2021 ◽  
Author(s):  
Soumava Dey ◽  
Gunther Correia Bacellar ◽  
Mallikarjuna Basappa Chandrappa ◽  
Raj Kulkarni

The rise of the coronavirus disease 2019 (COVID-19) pandemic has made it necessary to improve existing medical screening and clinical management of this disease. While COVID-19 patients are known to exhibit a variety of symptoms, the major symptoms include fever, cough, and fatigue. Since these symptoms also appear in pneumonia patients, this creates complications in COVID-19 detection especially during the flu season. Early studies identified abnormalities in chest X-ray images of COVID-19 infected patients that could be beneficial for disease diagnosis. Therefore, chest X-ray image-based disease classification has emerged as an alternative to aid medical diagnosis. However, manual detection of COVID-19 from a set of chest X-ray images comprising both COVID-19 and pneumonia cases is cumbersome and prone to human error. Thus, artificial intelligence techniques powered by deep learning algorithms, which learn from radiography images and predict presence of COVID-19 have potential to enhance current diagnosis process. Towards this purpose, here we implemented a set of deep learning pre-trained models such as ResNet, VGG, Inception and EfficientNet in conjunction with developing a computer vision AI system based on our own convolutional neural network (CNN) model: Deep Learning in Healthcare (DLH)-COVID. All these CNN models cater to image classification exercise. We used publicly available resources of 6,432 images and further strengthened our model by tuning hyperparameters to provide better generalization during the model validation phase. Our final DLH-COVID model yielded the highest accuracy of 96% in detection of COVID-19 from chest X-ray images when compared to images of both pneumonia-affected and healthy individuals. Given the practicality of acquiring chest X-ray images by patients, we also developed a web application (link: https://toad.li/xray) based on our model to directly enable users to upload chest X-ray images and detect the presence of COVID-19 within a few seconds. Taken together, here we introduce a state-of-the-art artificial intelligence-based system for efficient COVID-19 detection and a user-friendly application that has the capacity to become a rapid COVID-19 diagnosis method in the near future.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1257
Author(s):  
Milkisa Yebasse ◽  
Birhanu Shimelis ◽  
Henok Warku ◽  
Jaepil Ko ◽  
Kyung Joo Cheoi

Deep learning architectures are widely used in state-of-the-art image classification tasks. Deep learning has enhanced the ability to automatically detect and classify plant diseases. However, in practice, disease classification problems are treated as black-box methods. Thus, it is difficult to trust the model that it truly identifies the region of the disease in the image; it may simply use unrelated surroundings for classification. Visualization techniques can help determine important areas for the model by highlighting the region responsible for the classification. In this study, we present a methodology for visualizing coffee diseases using different visualization approaches. Our goal is to visualize aspects of a coffee disease to obtain insight into what the model “sees” as it learns to classify healthy and non-healthy images. In addition, visualization helped us identify misclassifications and led us to propose a guided approach for coffee disease classification. The guided approach achieved a classification accuracy of 98% compared to the 77% of naïve approach on the Robusta coffee leaf image dataset. The visualization methods considered in this study were Grad-CAM, Grad-CAM++, and Score-CAM. We also provided a visual comparison of the visualization methods.


Author(s):  
Aravind Krishnaswamy Rangarajan ◽  
◽  
Raja Purushothaman ◽  
Maheswari Prabhakar ◽  
Cezary Szczepański ◽  
...  

Crop and disease classification is one of the important problems in automation of agricultural processes with multi-cropping method where the field is cultivated with more than one crop. In order to solve this classification problem, a study has been carried out in the field cultivating eggplant (Solanum melongena) and tomato (Solanum lycopersicum) using the images obtained from a mobile phone camera. Textural descriptors namely contrast, correlation, energy and homogeneity were extracted from the gray-scale converted RGB image for crop identification, i.e., (tomato or eggplant) and the same descriptors were extracted from the gray-scale converted image from Hue Saturation Value (HSV) for disease classification (due to Cercospora leaf spot disease or two-spotted spider infestation). Discriminant analysis, Naive Bayes algorithm, support vector machine and neural network were the classification algorithms used with a resulting best accuracy of 97.61%, 95.62%, 98.01% and 98.94% for crop identification, 86.09%, 76.52%, 86.96% and 86.04% for disease classification respectively. Similarly, application of algorithm with 6 histogram-based descriptors for health status detection resulted in an accuracy of 66.67%, 37.04%, 50% and 72.9% respectively. Deep learning algorithm namely AlexNet was also evaluated which resulted in an accuracy of 100% for crop identification, 89.36% for health status detection and 81.51% for disease classification. Among the algorithms, AlexNet resulted in the best average accuracy of 90.29% for the above classification tasks.


Sign in / Sign up

Export Citation Format

Share Document