scholarly journals Ovarian Estrogen Synthesis Reduced by Peritoneal Endometriosis in Rat Autologous Transplantation Model

Author(s):  
Jian Zhang ◽  
Yu Zhang ◽  
Jiali Luo ◽  
Lin Yu ◽  
Panpan Li ◽  
...  

Abstract OBJECTIVE: To investigate the effects of peritoneal endometriosis on rat ovaries. METHODS: A rat model of peritoneal endometriosis was established by autologous transplantation. qPCR was performed to measure mRNA levels of steroid hormone and steroid synthesis-related genes in the ovaries of endometriosis rats. Immunohistochemistry was performed to characterize the distribution of FSHR in the ovaries of endometriosis rats. RNAseq was performed to find pathological changes in the ovaries of endometriosis rats. RESULTS: By qPCR, it was revealed that mRNA levels of steroid hormone synthesis-related genes were decreased in the ovaries of rats with endometriosis; With IHC, observed that FSHR expression was significantly decreased in the antral follicles of rats with endometriosis. RNAseq revealed that endometriosis affected transcription of the genes related to the microtubule structure and tight junctions of rat ovarian cells. CONCLUSION: Peritoneal endometriosis decreased the genic expression of ovarian steroid hormone synthetases and FSHR protein level in granulosa cells of antral follicles, and reduced the mRNA levels of the microtubule structure and tight junctions in rat ovarian cells, which contribute to the impairment of ovarian function.

Endocrinology ◽  
2010 ◽  
Vol 151 (7) ◽  
pp. 3214-3224 ◽  
Author(s):  
Sofia Mavridou ◽  
Maria Venihaki ◽  
Olga Rassouli ◽  
Christos Tsatsanis ◽  
Dimitris Kardassis

Scavenger receptor class B type I (SR-BI) facilitates the reverse transport of excess cholesterol from peripheral tissues to the liver via high-density lipoproteins. In steroidogenic tissues, SR-BI supplies cholesterol for steroid hormone production. We show here that the transcription of the human SR-BI gene is subject to feedback inhibition by glucocorticoid in adrenal and ovarian cells. SR-BI mRNA levels were increased in adrenals from corticosterone-insufficient Crh−/− mice, whereas corticosterone replacement by oral administration inhibited SR-BI gene expression in these mice. SR-BI mRNA levels were increased in adrenals from wild-type mice treated with metyrapone, a drug that blocks corticosterone synthesis. Experiments in adrenocortical H295R and ovarian SKOV-3 cells using cycloheximide and siRNA-mediated gene silencing revealed that glucocorticoid-mediated inhibition of SR-BI gene transcription requires de novo protein synthesis and the glucocorticoid receptor (GR). No direct binding of GR to the SR-BI promoter could be demonstrated in vitro and in vivo, suggesting an indirect mechanism of repression of SR-BI gene transcription by GR in adrenal cells. Deletion analysis established that the region of the human SR-BI promoter between nucleotides −201 and −62 is sufficient to mediate repression by glucocorticoid. This region contains putative binding sites for transcriptional repressors that could play a role in SR-BI gene regulation in response to glucocorticoid. In summary, this is the first report showing that glucocorticoid suppress SR-BI expression suggesting that steroidogenic tissues maintain steroid hormone homeostasis by prohibiting SR-BI-mediated high-density lipoprotein cholesterol uptake when the endogenous levels of glucocorticoid are elevated.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Li Yu ◽  
Miao Liu ◽  
Zhenxin Wang ◽  
Te Liu ◽  
Suying Liu ◽  
...  

Abstract Background Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disorder with various manifestations and complex etiology. Follicular fluid (FF) serves as the complex microenvironment for follicular development. However, the correlation between the concentration of steroid in FF and the pathogenesis of PCOS is still unclear. Methods Twenty steroid levels in FF from ten patients with PCOS and ten women with male-factor infertility undergoing in vitro fertilization were tested by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in order to explore their possibly correlation with PCOS. Meanwhile, the mRNA levels of core enzymes in steroid synthesis pathway from exosomes of FF were also detected by qPCR. Results The estriol (p < 0.01), estradiol (p < 0.05) and prenenolone (p < 0.01) levels in FF of PCOS group were significantly increased, compared to the normal group, and the progesterone levels (p < 0.05) were decreased in PCOS group. Increased mRNA levels of CYP11A, CYP19A and HSD17B2 of exosomes were accompanied by the hormonal changes in FF. Correlation analysis showed that mRNA levels of CYP11A and HSD17B2 were negatively correlated with percent of top-quality embryos and rate of embryos develop to blastocyst. Conclusion Our results suggest that increased levels of estrogen and pregnenolone in follicular fluid may affect follicle development in PCOS patients, and the mechanism is partially related to HSD17B1, CYP19A1 and CYP11A1 expression change in FF exosomes.


2020 ◽  
Vol 103 (5) ◽  
pp. 1069-1084
Author(s):  
Adam J Ziecik ◽  
Klaudia Drzewiecka ◽  
Katarzyna Gromadzka-Hliwa ◽  
Jan Klos ◽  
Patrycja Witek ◽  
...  

Abstract Altrenogest with gonadotropins is commonly used to synchronize the estrous cycle, but it can also lead to follicular cyst formation, especially in prepubertal gilts. Here, we aimed to investigate how maturity and altrenogest treatment affect the development, endocrine milieu, and molecular control of ovarian follicles. Crossbred prepubertal and mature gilts were challenged or not (control) with altrenogest, and ovaries were collected in the morning on the first day of behavioral estrus. In prepubertal gilts, altrenogest decreased the percentage of primordial and atretic small follicles, but increased large antral follicles when compared with controls. In mature gilts, altrenogest reduced the percentage of primary follicles and elevated the total number of antral follicles. Maturity affected the estradiol level in the follicular fluid of preovulatory follicles, luteinizing hormone (LH)-stimulated cyclic adenosine monophosphate (cAMP) generation, and LH receptor messenger RNA (mRNA) expression in granulosa. Moreover, cytochrome P45017A1 (CYP17A1) mRNA levels in the theca layer were affected and correlated with follicular androstendione and estradiol concentration. Altrenogest negatively affected follicular fluid progesterone concentration and decreased levels of prostaglandin (PG) E2 in prepubertal gilts and PGF2alpha metabolite in mature gilts. LH-stimulated cAMP release in granulosa cells of mature gilts as well as human chorionic gonadotropin- and forskolin-induced cAMP were also affected. In addition, altrenogest downregulated CYP17A1 mRNA in the prepubertal theca layer and PGF2alpha synthase expression in the granulosa and theca layer of mature gilts. To the best of our knowledge, this is the first study to report multiple effects of maturity and altrenogest on the endocrine milieu and molecular regulations governing ovarian follicle development in gilts.


2013 ◽  
Vol 91 (11) ◽  
pp. 5229-5239 ◽  
Author(s):  
S. J. Ying ◽  
S. H. Xiao ◽  
C. L. Wang ◽  
B. S. Zhong ◽  
G. M. Zhang ◽  
...  

2020 ◽  
Vol 32 (2) ◽  
pp. 223
Author(s):  
L. G. Barrozo ◽  
F. T. G. Bezerra ◽  
L. R. F. M. Paulino ◽  
A. W. B. Silva ◽  
J. R. V. Silva

The aims of this study were to evaluate the effects of epidermal growth factor (EGF) and progesterone (P4) on maturation and expression transcripts for GDF9, CCNB1, H1FOO, cMOS, PARN, and eIF4E after prematuration of cumulus-oocyte complexes (COCs) from antral follicles. Bovine COCs (3-6mm) were aspirated and pre-matured for 20h in control medium [TCM-199 containing 5.0mgmL−1 LH, 0.5mgmL−1 FSH, 0.4% bovine serum albumin, cilostamide (10μM) and follicular hemisections] alone or supplemented with EGF (10ngmL−1), P4 (100 µM), or both EGF (10ngmL−1) and P4 (100 µM). After that, COCs were matured for 24h in the same medium, without EGF, P4, cilostamide, and follicular hemisections. Oocyte diameters were evaluated with the software Nis Elements (Nikon Instruments Inc.). To evaluate meiotic progression, the oocytes were fixed in 4% paraformaldehyde and transferred to 0.5% Triton X-100. The chromatin configuration during meiosis was assessed by 10μgmL−1 bisbenzimide (Hoechst 33342) and analysed under an epi-fluorescent inverted microscope (DMI4000B; Leica). Oocytes were classified according to the nuclear maturation stage as germinal vesicle, metaphase I, anaphase I, telophase I, and metaphase II. To evaluate mRNA expression, oocytes were stored in micr-centrifuge tubes at −80°C until RNA extraction. RNA was extracted using Trizol according to the manufacturer's instructions (Invitrogen). After reverse transcription, mRNA for GDF9, cyclin B1, H1FOO, cMOS, PARN, eIF4E, and GAPDH (housekeeping gene) was quantified by real-time PCR and analysed by Kruskal-Wallis test. The percentages of oocytes in each stage of maturation were compared by Mann-Whitney test (P&lt;0.05). The results showed that prematuration of COCs in the presence of P4 and both EGF and P4 promoted an increase in oocyte diameter compared with the control or EGF treatment alone. The presence of cilostamide inhibited early meiotic resumption, benefiting oocyte capacitation, but the presence of EGF, P4, or EGF and P4 together in the prematuration medium did not influence meiosis resumption rates. The presence of EGF or P4 in prematuration medium increased the mRNA levels for cMOS in oocytes (P&lt;0.05). The H1FOO mRNA levels in oocytes cultured with EGF and P4 increased significantly compared with oocytes cultured in EGF alone (P&lt;0.05). In contrast, mRNA levels for cyclin B1 in oocytes cultured with P4 were higher than those cultured in the presence of EGF alone (P&lt;0.05). In addition, levels of mRNA for eIF4E showed a significant reduction in oocytes cultured with P4 compared with those pre-matured with EGF or both EGF and P4. The EGF treatment reduced the levels of mRNA for GDF9 compared with control medium. The mRNA levels of PARN did not differ significantly between treatments. In conclusion, EGF, P4, and EGF and P4 combined did not influence oocyte growth and meiotic resumption. However, EGF or P4 increased the mRNA expression of cMOS, whereas EGF reduced the levels of transcripts for GDF9.


2020 ◽  
Vol 102 (6) ◽  
pp. 1290-1305 ◽  
Author(s):  
Patrycja Kurowska ◽  
Ewa Mlyczyńska ◽  
Monika Dawid ◽  
Joelle Dupont ◽  
Agnieszka Rak

Abstract Vaspin, visceral-adipose-tissue-derived serine protease inhibitor, is involved in the development of obesity, insulin resistance, inflammation, and energy metabolism. Our previous study showed vaspin expression and its regulation in the ovary; however, the role of this adipokine in ovarian cells has never been studied. Here, we studied the in vitro effect of vaspin on various kinase-signaling pathways: mitogen-activated kinase (MAP3/1), serine/threonine kinase (AKT), signal transducer and activator of transcription 3 (STAT3) protein kinase AMP (PRKAA1), protein kinase A (PKA), and on expression of nuclear factor kappa B (NFKB2) as well as on steroid synthesis by porcine ovarian cells. By using western blot, we found that vaspin (1 ng/ml), in a time-dependent manner, increased phosphorylation of MAP3/1, AKT, STAT3, PRKAA1, and PKA, while it decreased the expression of NFKB2. We observed that vaspin, in a dose-dependent manner, increased the basal steroid hormone secretion (progesterone and estradiol), mRNA and protein expression of steroid enzymes using real-time PCR and western blot, respectively, and the mRNA of gonadotropins (FSHR, LHCGR) and steroids (PGR, ESR2) receptors. The stimulatory effect of vaspin on basal steroidogenesis was reversed when ovarian cells were cultured in the presence of a PKA pharmacological inhibitor (KT5720) and when GRP78 receptor was knocked down (siRNA). However, in the presence of insulin-like growth factor type 1 and gonadotropins, vaspin reduced steroidogenesis. Thus, vaspin, by activation of various signaling pathways and stimulation of basal steroid production via GRP78 receptor and PKA, could be a new regulator of porcine ovarian function.


2011 ◽  
Vol 47 (2) ◽  
pp. 241-250 ◽  
Author(s):  
M Gohin ◽  
P Bodinier ◽  
A Fostier ◽  
J Bobe ◽  
F Chesnel

In contrast to the classical model describing the synthesis of androgens and estrogens as restricted to somatic cells, a previous study demonstrated that Xenopus laevis oocytes participate in androgen synthesis. The objective of our study was to determine whether Xenopus oocytes are also involved in estrogen synthesis. More precisely, we analyzed aromatase expression by in situ hybridization and RT-QPCR and measured aromatase activity. Aromatase, the enzyme responsible for estrogen synthesis, appears to be expressed and active not only in the follicular cells but also in the vitellogenic oocytes. During late oogenesis, aromatase oocyte expression and activity decreased concomitantly with the trend observed in surrounding follicular layers. In order to investigate the role of estradiol-17β (E2), we studied its effect on oocyte meiotic resumption. It appears that, as in Rana pipiens, E2 inhibited the follicle-enclosed maturation of Xenopus oocytes, likely through inhibition of LH-induced maturation-inducing steroid synthesis. In addition, E2 exerted a slight enhancing action on denuded oocyte maturation whose biological significance remains unclear. Together, our results demonstrate that Xenopus oocyte significantly participates in ovarian E2 synthesis and this may be a common feature of vitellogenic vertebrates.


1989 ◽  
Vol 109 (3) ◽  
pp. 1047-1056 ◽  
Author(s):  
J M Anderson ◽  
C M Van Itallie ◽  
M D Peterson ◽  
B R Stevenson ◽  
E A Carew ◽  
...  

We previously identified and characterized ZO-1 as a peripheral membrane protein specifically associated with the cytoplasmic surface of tight junctions. Here we describe the identification of partial cDNA sequences encoding rat and human ZO-1 and their use to study the assembly of tight junctions in the Caco-2 human intestinal epithelial cell line. A rat cDNA was isolated from a lambda-gtll expression library by screening with mAbs. Polyclonal antibodies were raised to cDNA-encoded fusion protein; several properties of these antibodies support this cDNA as encoding ZO-1. Expression of ZO-1 mRNA occurs in the rat and Caco-2 cells with a major transcript of approximately 7.5 kb. To disrupt tight junctions and study the subsequent process of assembly, Caco-2 cells were grown in suspension for 48 h in Ca++/Mg++-free spinner medium during which time they lose cell-cell contacts, become round, and by immunofluorescence microscopy show diffuse and speckled localization of ZO-1. Within hours of replating at confluent density in Ca++/Mg++-containing media, attached cells show discrete localization of ZO-1 at cell-cell contacts. Within 2 d, fully confluent monolayers form, and ZO-1 localizes in a continuous gasket-like fashion circumscribing all cells. ZO-1 mRNA levels are highest in cells in spinner culture, and upon replating rapidly fall and plateau at approximately 10% of initial levels after 2-3 wk in culture. ZO-1 protein levels are lowest in contact-free cells and rise five- to eightfold over the same period. In contrast, mRNA levels for sucrase-isomaltase, an apical membrane hydrolase, increase only after a confluent monolayer forms. Thus, in this model of contact-dependent assembly of the tight junction, there is both a rapid assembly beginning upon cell-cell contact, as well as a long-term modulation involving changes in expression of ZO-1 mRNA and protein levels.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2858-2858
Author(s):  
Ravi Bhatia ◽  
Helen Xu ◽  
David Snyder ◽  
Tinisha McDonald ◽  
Marilyn Slovak ◽  
...  

Abstract Although imatinib is highly effective in inducing remissions in CML patients, the long-term durability of response is not clear. Here we report updated results of a clinical trial investigating the feasibility and efficacy of collection and storage of PBSC from patients in complete cytogenetic remission (CCR) on imatinib, for use in autologous transplantation in the event of subsequent relapse. PBSC were collected from 36 patients [31 CP, 5 AP (at start of imatinib); median age 45 years (range 22–70); 21 males, 15 females; median time from diagnosis 25 months (mos) (6–90); median duration of imatinib treatment 13 mos (6–41); median time from CCR 7 mos (1–26)]. Patients were administered G-CSF (10μg/kg/day), and PBSC collection initiated on day +5 with a targeted minimum of 2x106 CD34+ cells/kg. Imatinib was continued during G-CSF administration and PBSC collection. The G-CSF dose was escalated in case of poor collection. The median number of CD34+ cells (106/kg) collected was 2.56 (0.31–6.19) with a median of 3 phereses (1–13). Five patients failed to collect the target number of CD34+ cells, achieving a median of 0.87x106 CD34+ cells after a median 5 collections. Seven patients required &gt;6 collections to reach the target cell dose. There was no significant relationship between rapid (≤3) or slow (&gt;3) collection, or failure to collect, and clinical characteristics such as age, sex, disease stage, prior interferon, time from diagnosis, time on imatinib, and duration of CCR. PBSC collections were evaluated for BCR/ABL contamination by cytogenetics and PCR (Q-PCR and nested RT-PCR). Ph+ cells were detected on cytogenetic examination in 1 or more collections from 5 patients and Ph- abnormal clones were detected in 4 patients. Patients with Ph+ PBSC were slower collectors than those with Ph- PBSC (median 8 vs. 3 collections, p=0.04). BCR/ABL mRNA was detected by PCR in 1 or more collection from 30 of 32 patients evaluated. Two patients, both with BCR/ABL mRNA detected in pre-mobilzation marrow, collected with a single PCR negative collection. Three patients had collections with low levels of BCR/ABL mRNA detected only with more sensitive nested RT-PCR. Of 134 separate collections analyzed, BCR/ABL mRNA was detected by Q-PCR in 113 (84%), by nested RT-PCR in 11 (8%), while 10 (8%) were PCR negative. Rapid collectors had significantly lower BCR/ABL mRNA levels in their collections compared to pre-mobilization marrow (p&lt;0.05), whereas slow collectors did not show significant change in BCR/ABL levels. CD34+ cells isolated from PBSC showed significantly increased BCR/ABL mRNA levels compared with total nucleated cells (BCR/ABL:B2M ratio of 0.0006±0.0002 for NC vs. 0.03±0.01 for CD34+ cells, p=0.002). PBSC were injected into NOD/SCID mice to evaluate for presence of BCR/ABL+ progenitors capable of in vivo engraftment. Human cell engraftment was confirmed by flow cytometry in 3 of 4 patients, and BCR/ABL mRNA was detected in engrafted cells by Q-PCR. Our results indicate that cytogenetically negative PBSC collections can be obtained from CML patients receiving imatinib, but that mobilization is relatively poor. Rapid collectors have reduced BCR/ABL+ cell contamination in PBSC collections, and PCR negative collections are possible. However, the majority of PBSC products show evidence of persistent malignant stem cells. Additional strategies to enhance reliability and rapidity of collection and further deplete BCR/ABL+ stem cells in the PBSC product need to be explored.


1992 ◽  
Vol 132 (2) ◽  
pp. 269-276 ◽  
Author(s):  
P. H. Provencher ◽  
Y. Tremblay ◽  
A. Bélanger

ABSTRACT The present study examined the effects of steroids on steroidogenic enzyme activity in adrenal glands. Guinea-pig fasciculata-glomerulosa (FG) cells maintained in primary culture were exposed to steroids for 48 h. Although the treatment with androstenedione alone had no effect on 3β-hydroxysteroid dehydrogenase 4-ene-5-ene-isomerase (3β-HSD), 17-hydroxylase and 17,20-lyase activities, there was inhibition of 11-hydroxylase and 21-hydroxylase activities. When FG cells were exposed to 10 nmol ACTH/l for the last 24 h of incubation, ACTH alone had no effect on steroidogenic enzymes but, while combined with androstenedione, it further decreased 21-hydroxylase activity and stimulated 17-hydroxylase and 17,20-lyase activities. Cortisol, corticosterone, oestradiol and 11β-hydroxy androstenedione had no effect on steroidogenic enzyme activities while the inhibitory effect on 21-hydroxylase activity was only observed with androstenedione, testosterone and dihydrotestosterone. Addition of hydroxyflutamide, a pure antiandrogen, did not block the inhibitory effect of androstenedione on 21-hydroxylase and 11-hydroxylase activities. The reduction in oxygen tension from 19 to 2% which was aimed at examining the oxygen-mediated effects on steroidogenic enzymes, revealed that the reduction in 21-hydroxylase activity induced by androstenedione could not be prevented by low oxygen tension. An interaction of C19 steroids at the level of the enzymes is also suggested by our finding that androstenedione had no effect on basal and ACTH-stimulated steady-state 11-hydroxylase, 17-hydroxylase, 17,20-lyase and 21-hydroxylase mRNA levels. These results indicate that C19 steroids alter the adrenal steroidogenic enzyme activities in such a manner that C19 steroid synthesis is increased while glucocorticoid production is inhibited. The mechanism of action of C19 steroids does not involve gene expression for steroidogenic enzymes but probably a direct interaction with steroidogenic enzymes, namely 21-hydroxylase, 17-hydroxylase and 17,20-lyase. Our data suggest that C19 steroids may reduce the amount of 21-hydroxylase in the microsomal fraction which may have a major impact on the levels of microsomal P450 reductase available for 17-hydroxylase and 17,20-lyase activities. Journal of Endocrinology (1992) 132, 269–276


Sign in / Sign up

Export Citation Format

Share Document