scholarly journals KRT17 Serves as an Oncogene and a Predictor of Poor Survival in Hepatocellular Carcinoma Patients

Author(s):  
yuyan chen ◽  
Jing Chen ◽  
Zu-Cheng Tian ◽  
Dan-Hua Zhou ◽  
Ran Ji ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is the second most common cancer-associated cause of death globally. It is thus vital that novel diagnostic and prognostic biomarkers associated with early-stage HCC be identified. While keratin 17 (KRT17) has previously been reported to be associated with certain cancer types, its relationship with HCC remains to be defined. Methods:The expression of KRT17 in the TCGA LIHC database and in 44 pairs of HCC patient samples was assessed via qRT-PCR, western blotting, and immunohistochemical staining. The prognostic relevance of KRT17 was assessed using Kaplan-Meir curves, while important cancer- and KRT17-related biological processes were defined through gene set enrichment analysis (GSEA). The functional link between KRT17 expression and tumor cell proliferation/survival was assessed through flow cytometry, colony formation assay, CCK-8 assay, and subcutaneous tumor model approaches. Protein-protein interaction (PPI) networks and analyses of immune cell infiltration were also employed to define key signaling pathways associated with KRT17 expression in HCC. Results:HCC tissue samples exhibited increased KRT17 mRNA and protein expression that was predictive of poorer patient survival (P<0.001). GSEA and functional experiments revealed that KRT17 functioned as a regulator of HCC tumor cell survival, proliferation, and cell cycle progression in vitro and in vivo. PPI network analyses also revealed that KRT17 expression was linked to immune cell infiltration and activation in patients with HCC. Conclusion: We found that increased KRT17 levels were associated with poorer survival, more aggressive disease, and altered immune cell infiltration in patients suffering from HCC. As such, KRT17 may function as an oncogene and a prognostic biomarker in this cancer type.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xingwang Zhao ◽  
Longlong Zhang ◽  
Juan Wang ◽  
Min Zhang ◽  
Zhiqiang Song ◽  
...  

Abstract Background Systemic lupus erythematosus (SLE) is a multisystemic, chronic inflammatory disease characterized by destructive systemic organ involvement, which could cause the decreased functional capacity, increased morbidity and mortality. Previous studies show that SLE is characterized by autoimmune, inflammatory processes, and tissue destruction. Some seriously-ill patients could develop into lupus nephritis. However, the cause and underlying molecular events of SLE needs to be further resolved. Methods The expression profiles of GSE144390, GSE4588, GSE50772 and GSE81622 were downloaded from the Gene Expression Omnibus (GEO) database to obtain differentially expressed genes (DEGs) between SLE and healthy samples. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments of DEGs were performed by metascape etc. online analyses. The protein–protein interaction (PPI) networks of the DEGs were constructed by GENEMANIA software. We performed Gene Set Enrichment Analysis (GSEA) to further understand the functions of the hub gene, Weighted gene co‐expression network analysis (WGCNA) would be utilized to build a gene co‐expression network, and the most significant module and hub genes was identified. CIBERSORT tools have facilitated the analysis of immune cell infiltration patterns of diseases. The receiver operating characteristic (ROC) analyses were conducted to explore the value of DEGs for SLE diagnosis. Results In total, 6 DEGs (IFI27, IFI44, IFI44L, IFI6, EPSTI1 and OAS1) were screened, Biological functions analysis identified key related pathways, gene modules and co‐expression networks in SLE. IFI27 may be closely correlated with the occurrence of SLE. We found that an increased infiltration of moncytes, while NK cells resting infiltrated less may be related to the occurrence of SLE. Conclusion IFI27 may be closely related pathogenesis of SLE, and represents a new candidate molecular marker of the occurrence and progression of SLE. Moreover immune cell infiltration plays important role in the progession of SLE.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhuomao Mo ◽  
Daiyuan Liu ◽  
Dade Rong ◽  
Shijun Zhang

Background: Generally, hepatocellular carcinoma (HCC) exists in an immunosuppressive microenvironment that promotes tumor evasion. Hypoxia can impact intercellular crosstalk in the tumor microenvironment. This study aimed to explore and elucidate the underlying relationship between hypoxia and immunotherapy in patients with HCC.Methods: HCC genomic and clinicopathological datasets were obtained from The Cancer Genome Atlas (TCGA-LIHC), Gene Expression Omnibus databases (GSE14520) and International Cancer Genome Consortium (ICGC-LIRI). The TCGA-LIHC cases were divided into clusters based on single sample gene set enrichment analysis and hierarchical clustering. After identifying patients with immunosuppressive microenvironment with different hypoxic conditions, correlations between immunological characteristics and hypoxia clusters were investigated. Subsequently, a hypoxia-associated score was established by differential expression, univariable Cox regression, and lasso regression analyses. The score was verified by survival and receiver operating characteristic curve analyses. The GSE14520 cohort was used to validate the findings of immune cell infiltration and immune checkpoints expression, while the ICGC-LIRI cohort was employed to verify the hypoxia-associated score.Results: We identified hypoxic patients with immunosuppressive HCC. This cluster exhibited higher immune cell infiltration and immune checkpoint expression in the TCGA cohort, while similar significant differences were observed in the GEO cohort. The hypoxia-associated score was composed of five genes (ephrin A3, dihydropyrimidinase like 4, solute carrier family 2 member 5, stanniocalcin 2, and lysyl oxidase). In both two cohorts, survival analysis revealed significant differences between the high-risk and low-risk groups. In addition, compared to other clinical parameters, the established score had the highest predictive performance at both 3 and 5 years in two cohorts.Conclusion: This study provides further evidence of the link between hypoxic signals in patients and immunosuppression in HCC. Defining hypoxia-associated HCC subtypes may help reveal potential regulatory mechanisms between hypoxia and the immunosuppressive microenvironment, and our hypoxia-associated score could exhibit potential implications for future predictive models.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Yuanyuan Feng ◽  
Xinfang Tang ◽  
Changcheng Li ◽  
Ying Su ◽  
Xiaoyu Wang ◽  
...  

Objective. ARID1A has been discovered as a potential cancer biomarker. But its role in hepatocellular carcinoma (HCC) is subject to considerable dispute. Methods. The relationship between ARID1A and clinical factors was investigated. Clinicopathological variables related to overall survival in HCC subjects were identified using Cox and Kaplan–Meier studies. The connection between immune infiltrating cells and ARID1A expression was investigated using the tumor Genome Atlas (TCGA) dataset for gene set enrichment analysis (GSEA). Finally, a cell experiment was used to confirm it. Results. The gender and cancer topography (T) categorization of HCC were linked to increased ARID1A expression. Participants with advanced levels of ARID1A expression had a worse prognosis than someone with lower levels. ARID1A was shown to be a risk indicator of overall survival on its own. ARID1A expression is inversely proportional to immune cell infiltration. In vitro, decreasing ARID1A expression substantially slowed the cell cycle and decreased HCC cell proliferation, migration, and invasion. Conclusion. The expression of ARID1A could be used to predict the outcome of HCC. It is closely related to tumor immune cell infiltration.


2022 ◽  
Vol 2022 ◽  
pp. 1-24
Author(s):  
Bin-Bin Da ◽  
Shuai Luo ◽  
Ming Huang ◽  
Fei Song ◽  
Rong Ding ◽  
...  

It has been demonstrated that the inflammatory response influences cancer development and can be used as a prognostic biomarker in various tumors. However, the relevance of genes associated with inflammatory responses in hepatocellular carcinoma (HCC) remains unknown. The Cancer Genome Atlas (TCGA) database was analyzed using weighted gene coexpression network analysis (WGCNA) and differential analysis to discover essential inflammatory response-related genes (IFRGs). Cox regression studies, both univariate and multivariate, were employed to develop a prognostic IFRGs signature. Additionally, Gene Set Enrichment Analysis (GSEA) was used to deduce the biological function of the IFRGs signature. Finally, we estimated immune cell infiltration using a single sample GSEA (ssGSEA) and x-cell. Our results revealed that, among the major HCC IFRGs, two (DNASE1L3 and KLKB1) were employed to create a predictive IFRG signature. The IFRG signature could correctly predict overall survival (O.S) as per Kaplan-Meier time-dependent roc curves analysis. It was also linked to pathological tumor stage and T stage and might be used as a prognostic predictor in HCC. GSEA analysis concluded that the IFRG signature might influence the immune response in HCC. Immunological cell infiltration and immune checkpoint molecule expression differed in the high-risk and low-risk groups. As a result of our findings, DNASILE may play a role in the tumor microenvironment. However, more research is necessary to confirm the role of DNASE1L3 and KLKB1.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qiuxian Zheng ◽  
Qin Yang ◽  
Jiaming Zhou ◽  
Xinyu Gu ◽  
Haibo Zhou ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) has a poor prognosis and has become the sixth most common malignancy worldwide due to its high incidence. Advanced approaches to therapy, including immunotherapeutic strategies, have played crucial roles in decreasing recurrence rates and improving clinical outcomes. The HCC microenvironment is important for both tumour carcinogenesis and immunogenicity, but a classification system based on immune signatures has not yet been comprehensively described. Methods HCC datasets from The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), and the International Cancer Genome Consortium (ICGC) were used in this study. Gene set enrichment analysis (GSEA) and the ConsensusClusterPlus algorithm were used for clustering assessments. We scored immune cell infiltration and used linear discriminant analysis (LDA) to improve HCC classification accuracy. Pearson's correlation analyses were performed to assess relationships between immune signature indices and immunotherapies. In addition, weighted gene co-expression network analysis (WGCNA) was applied to identify candidate modules closely associated with immune signature indices. Results Based on 152 immune signatures from HCC samples, we identified four distinct immune subtypes (IS1, IS2, IS3, and IS4). Subtypes IS1 and IS4 had more favourable prognoses than subtypes IS2 and IS3. These four subtypes also had different immune system characteristics. The IS1 subtype had the highest scores for IFNγ, cytolysis, angiogenesis, and immune cell infiltration among all subtypes. We also identified 11 potential genes, namely, TSPAN15, TSPO, METTL9, CD276, TP53I11, SPINT1, TSPO, TRABD2B, WARS2, C9ORF116, and LBH, that may represent potential immunological biomarkers for HCC. Furthermore, real-time PCR revealed that SPINT1, CD276, TSPO, TSPAN15, METTL9, and WARS2 expression was increased in HCC cells. Conclusions The present gene-based immune signature classification and indexing may provide novel perspectives for both HCC immunotherapy management and prognosis prediction.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Mengmeng Wang ◽  
Di Chen ◽  
Yushuang Xu ◽  
Mengjun Qiu ◽  
Xin Jiang ◽  
...  

Background. The lncRNA BACE1-AS was identified as a plasma molecular marker in the early diagnosis of Alzheimer’s disease, but its role in tumors remains poorly defined. Methods. The expression patterns, genomic mutation, and prognostic significance of BACE1-AS in pan-cancers were compared by analyzing 32 types of tumors from The Cancer Genome Atlas and cBioPortal databases. The relationships between BACE1-AS expression levels and the degree of immune cell infiltration, immune components, and immune-related genes were explored. The possible molecular mechanisms of BACE1-AS in tumors were explored using gene set enrichment analysis (GSEA). Finally, the role of BACE1-AS in hepatocellular carcinoma was confirmed via quantitative real-time polymerase chain reaction (qRT-PCR). Results. BACE1-AS expression levels were significantly upregulated in LIHC, GBM, KIRC, CHOL, STAD, KICH, COAD, and PRAD. Higher expression levels of BACE1-AS were associated with worse overall survival in patients with HNSC and LIHC, while the opposite was found in PCPG and THCA. The overall mutation rate of BACE1-AS in pan-cancer was only approximately 0.9%, and it occurred mainly in uveal melanoma and uterine carcinoma. Generally, BACE1-AS expression was negatively correlated with the immune microenvironment. BACE1-AS expression was mainly related to naïve B cells, activated memory CD4 T cells, monocytes, M1 macrophages, M2 macrophages, and resting mast cells. The potential mechanisms of BACE1-AS in tumors were mainly via regulating the activities of B cell-mediated immunity, immune response regulating cell surface receptor signaling, RNA binding in posttranscriptional gene silencing, B cell receptor signaling pathways, and immune receptor activity. Finally, the qRT-PCR results confirmed that the expression levels of BACE1-AS in hepatocellular carcinoma cell lines were upregulated. Conclusions. Overall, our results suggest that BACE1-AS is associated with the expression, prognosis, and rate of immune cell infiltration of most tumors. Thus, BACE1-AS may be a potential target for immunotherapies aimed at improving cancer patient outcomes.


2020 ◽  
Author(s):  
Ruochan Chen ◽  
Yiya Zhang

Abstract Background: Hepatocellular carcinoma (HCC) has high mortality rate and is a serious disease burden globally. Hence, identification and characterization of novel biomarkers for the diagnosis and prognosis of HCC are critically important. The protein EPDR1 (ependymin related 1) is a member of piscine brain glycoproteins and is involved in cell adhesion. This is the first study to report the expression of EPDR1 and its prognostic significance, pathological role, and association with cancer immunity in HCC.Methods: The gene expression, prognostic, and clinicopathological analyses were performed based on the data obtained from multiple transcriptome databases. Protein expression of EPDR1 in HCC was verified using human protein atlas and CPTAC databases. Co-expression network analysis using the LinkedOmics database was performed to identify genes co-expressed with EPDR1 expression. Functional analysis of the co-expressed genes, including gene set enrichment analysis was performed to identify the functional role of EPDR1. The statistical analysis was conducted in R, and the relationship between EPDR1 expression and immune cell infiltration was analyzed using TIMER and CIBERSORT resources. Results: The expression of EPDR1 was found to be significantly higher in HCC tissues than in the normal tissues and is an independent prognostic factor for the overall survival of HCC patients. Further, a high level of EPDR1 was shown to be correlated with advanced stage of HCC. Functional analysis revealed that EPDR1 is associated with multiple signaling pathways as well as pathways related to cancer and apoptosis. Notably, EPDR1 expression significantly correlated with purity and the infiltration levels of B cells, CD8+ and CD4+ T cells, macrophages, neutrophils, and dendritic cells in HCC. Further, the EPDR1 expression significantly correlated with the expression of immune signatures, such as KIR2DL4, ITGAM, GATA3, STAT6, STAT5A, BCL6, STAT3, and HAVCR2.Conclusions: Our study identified EPDR1 as a novel prognostic biomarker in HCC. The expression of EPDR1 was shown to be associated with immune cell infiltration as well as the signature molecules that potentially regulate these processes during the carcinogenesis of HCC. With better understanding of its biological function, EPDR1 could become an effective target for HCC diagnosis and treatment in the future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shixin Xiang ◽  
Jing Li ◽  
Jing Shen ◽  
Yueshui Zhao ◽  
Xu Wu ◽  
...  

Background: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. The efficacy of immunotherapy usually depends on the interaction of immunomodulation in the tumor microenvironment (TME). This study aimed to explore the potential stromal-immune score-based prognostic genes related to immunotherapy in HCC through bioinformatics analysis.Methods: ESTIMATE algorithm was applied to calculate the immune/stromal/Estimate scores and tumor purity of HCC using the Cancer Genome Atlas (TCGA) transcriptome data. Functional enrichment analysis of differentially expressed genes (DEGs) was analyzed by the Database for Annotation, Visualization, and Integrated Discovery database (DAVID). Univariate and multivariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis were performed for prognostic gene screening. The expression and prognostic value of these genes were further verified by KM-plotter database and the Human Protein Atlas (HPA) database. The correlation of the selected genes and the immune cell infiltration were analyzed by single sample gene set enrichment analysis (ssGSEA) algorithm and Tumor Immune Estimation Resource (TIMER).Results: Data analysis revealed that higher immune/stromal/Estimate scores were significantly associated with better survival benefits in HCC within 7 years, while the tumor purity showed a reverse trend. DEGs based on both immune and stromal scores primarily affected the cytokine–cytokine receptor interaction signaling pathway. Among the DEGs, three genes (CASKIN1, EMR3, and GBP5) were found most significantly associated with survival. Moreover, the expression levels of CASKIN1, EMR3, and GBP5 genes were significantly correlated with immune/stromal/Estimate scores or tumor purity and multiple immune cell infiltration. Among them, GBP5 genes were highly related to immune infiltration.Conclusion: This study identified three key genes which were related to the TME and had prognostic significance in HCC, which may be promising markers for predicting immunotherapy outcomes.


2018 ◽  
Vol 115 (50) ◽  
pp. E11701-E11710 ◽  
Author(s):  
Yoong Wearn Lim ◽  
Haiyin Chen-Harris ◽  
Oleg Mayba ◽  
Steve Lianoglou ◽  
Arthur Wuster ◽  
...  

Cancer immunotherapy has emerged as an effective therapy in a variety of cancers. However, a key challenge in the field is that only a subset of patients who receive immunotherapy exhibit durable response. It has been hypothesized that host genetics influences the inherent immune profiles of patients and may underlie their differential response to immunotherapy. Herein, we systematically determined the association of common germline genetic variants with gene expression and immune cell infiltration of the tumor. We identified 64,094 expression quantitative trait loci (eQTLs) that associated with 18,210 genes (eGenes) across 24 human cancers. Overall, eGenes were enriched for their being involved in immune processes, suggesting that expression of immune genes can be shaped by hereditary genetic variants. We identified the endoplasmic reticulum aminopeptidase 2 (ERAP2) gene as a pan-cancer type eGene whose expression levels stratified overall survival in a subset of patients with bladder cancer receiving anti–PD-L1 (atezolizumab) therapy. Finally, we identified 103 gene signature QTLs (gsQTLs) that were associated with predicted immune cell abundance within the tumor microenvironment. Our findings highlight the impact of germline SNPs on cancer-immune phenotypes and response to therapy; and these analyses provide a resource for integration of germline genetics as a component of personalized cancer immunotherapy.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12304
Author(s):  
Zhengyuan Wu ◽  
Leilei Chen ◽  
Chaojie Jin ◽  
Jing Xu ◽  
Xingqun Zhang ◽  
...  

Background Cutaneous melanoma (CM) is a life-threatening destructive malignancy. Pyroptosis significantly correlates with programmed tumor cell death and its microenvironment through active host-tumor crosstalk. However, the prognostic value of pyroptosis-associated gene signatures in CM remains unclear. Methods Gene profiles and clinical data of patients with CM were downloaded from The Cancer Genome Atlas (TCGA) to identify differentially expressed genes associated with pyroptosis and overall survival (OS). We constructed a prognostic gene signature using LASSO analysis, then applied immune cell infiltration scores and Kaplan-Meier, Cox, and pathway enrichment analyses to determine the roles of the gene signature in CM. A validation cohort was collected from the Gene Expression Omnibus (GEO) database. Results Four pyroptosis-associated genes were identified and incorporated into a prognostic gene signature. Integrated bioinformatics findings showed that the signature correlated with patient survival and was associated with tumor growth and metastasis. The results of Gene Set Enrichment Analysis of a risk signature indicated that several enriched pathways are associated with cancer and immunity. The risk signature for immune status significantly correlated with tumor stem cells, the immune microenvironment, immune cell infiltration and immune subtypes. The expression of four pyroptosis genes significantly correlated with the OS of patients with CM and was related to the sensitivity of cancer cells to several antitumor drugs. A signature comprising four genes associated with pyroptosis offers a novel approach to the prognosis and survival of patients with CM and will facilitate the development of individualized therapy.


Sign in / Sign up

Export Citation Format

Share Document