scholarly journals The Long Non-Coding RNA SNHG16 Promotes NPC Cell Progression by Competitively Binding miR-23b-3p

Author(s):  
Hou Wei ◽  
Lu Xu ◽  
Tao Su ◽  
Yunxiao Wu ◽  
Yujuan Liu ◽  
...  

Abstract Background: This study aims at verifying the effect of non-coding RNA SNHG16 on promotes NPC cell progression via binding miR-23b-3p.Methods: The expression of non-coding RNA SNHG16 was detected by qRT-PCR in cell lines including c666-1 and HONE-1. Si-MCM6 and si-SNHG16 are transfected to cells to verify their effects on cell proliferation and apoptosis. MTT is used to measure cell viability while flow cytometry assay and transwell assay were used for cell apoptosis, cell cycle and invasion respectively. The expression level of MCM6 was determined by western blot. Relationships between mRNA MCM6 and lncRNA SNHG16 were explored by qRT-PCR and nude mouse tumorigenicity assay.Results: The MCM6 was overexpressed in NPC tissues and lncRNA SNHG16 showed the same trend. Those two factors were correlated with high cancer stage. The expression of MCM6 was decreased after si-SNHG16 and dual luciferase reporter system demonstrated their combine with miR-23b-3p. Further we explored the down-regulation of lncRNA SNHG16 could inhibit NPC cell proliferation, colony formation and also accelerate cell apoptosis rate. And this result could be altered by adding miR-23b-3p inhibitor.Conclusion: The lncRNA SNHG16 is able to promote the NPC proliferation via binding miR-23b-3p, which has potential for future treatment.

2018 ◽  
Vol 49 (4) ◽  
pp. 1403-1419 ◽  
Author(s):  
Yunxiuxiu Xu ◽  
Xinxi Luo ◽  
Wenguang He ◽  
Guangcheng Chen ◽  
Yanshan Li ◽  
...  

Background/Aims: To investigate the biological roles and underlying molecular mechanisms of long non-coding RNA (lncRNA) PVT1 in Hepatocellular carcinoma (HCC). Methods: qRT-PCR was performed to measure the expression of miRNA and mRNA. Western blot was performed to measure the protein expression. CCK-8 assay was performed to determine cell proliferation. Flow cytometry was performed to detect cell apoptosis. Wounding-healing assay and Transwell assay was performed to detect cell migration and invasion. Dual luciferase reporter assay was performed to verify the target relationship. Quantichrom iron assay was performed to check uptake level of cellular iron. Results: PVT1 expression was up-regulated in HCC tissues and cell lines. Function studies revealed that PVT1 knockdown significantly suppressed cell proliferation, migration and invasion, and induced cell apoptosis in vitro. Furthermore, PVT1 could directly bind to microRNA (miR)-150 and down-regulate miR-150 expression. Hypoxia-inducible protein 2 (HIG2) was found to be one target gene of miR-150, and PVT1 knockdown could inhibit the expression of HIG2 through up-regulating miR-150 expression. In addition, the expression of miR-150 was down-regulated, while the expression of HIG2 was up-regulated in HCC tissues and cell lines. Moreover, inhibition of miR-150 could partly reverse the biological effects of PVT1 knockdown on proliferation, motility, apoptosis and iron metabolism in vitro, which might be associated with dysregulation of HIG2. In vivo results showed that PVT1 knockdown suppressed tumorigenesis and iron metabolism disorder by regulating the expression of miR-150 and HIG2. Conclusion: Taken together, the present study demonstrates that PVT1/miR-150/HIG2 axis may lead to a better understanding of HCC pathogenesis and provide potential therapeutic targets for HCC.


2020 ◽  
Author(s):  
Xiaodong Huo ◽  
Huixing Wang ◽  
Ning Jiang ◽  
Kuo Yang ◽  
Bin Huo ◽  
...  

Abstract Background: Accumulating evidence has indicated the remarkable roles of long non-coding RNAs (lncRNAs) as oncogenes or tumor suppressors in many malignancies. The involvement of lncRNA GATA6-AS1 in cancers remains largely undiscovered. Herein, our research was aimed at elucidating the function and mechanism of GATA6-AS1 in lung adenocarcinoma (LUAD).Methods: Gene expression was measured through qRT-PCR and WB. Cell proliferation ratio was determined using CCK-8 and EdU assays. Cell apoptosis ratio was determined using TUNEL and flow cytometry assays. Molecular interactions were examined through RIP, RNA pull-down and luciferase reporter assays.Results: GATA6-AS1 expression was markedly down-regulated in LUAD cell lines. GATA6-AS1 could inhibit LUAD cell proliferation and promote cell apoptosis. Mechanistically, GATA6-AS1 was identified as the molecular sponge for miR-331-3p, whose knockdown in LUAD cells could reinforce the tumor-suppressing effects of GATA6-AS1 overexpression. Moreover, GATA6-AS1 functions as a competing endogenous RNA (ceRNA) through sequestering miR-331-3p to deregulate SOCS1, thus inhibiting JAK2/STAT3 signaling pathway and suppressing LUAD cell viability.Conclusions: These results demonstrate the tumor-suppressing function and mechanism of lncRNA GATA6-AS1 in LUAD cells. The axis of GATA6-AS1/miR-331-3p/SOCS1/JAK2/STAT3 can be adopted as a novel approach for LUAD treatment.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Hui-Zi Liu ◽  
Ti-Dong Shan ◽  
Yue Han ◽  
Xi-Shuang Liu

Abstract Increasing studies have shown that long non-coding RNAs (lncRNAs) are regarded as important regulators in the occurrence and development of colorectal cancer (CRC). Although lncRNA CASC9 has been studied in CRC, the detailed regulatory mechanism of CASC9 in CRC is still unclear. In this study, we found that CASC9 was significantly upregulated in CRC tissues and cell lines compared to normal controls and that aberrant expression was associated with the tumor-node-metastasis (TNM) stage of CRC. Functionally, CASC9 depletion efficiently inhibited the proliferation of CRC cells and induced cell apoptosis in vitro. Mechanistically, CASC9 was mainly enriched in the cytoplasm of CRC cells and interacted directly with miR-576-5p. Downregulation of miR-576-5p reversed the inhibitory effect of CASC9 siRNA on CRC cell progression. Furthermore, AKT3 has been identified as a downstream target of miR-576-5p. Spearman’s correlation analysis revealed that AKT3 was negatively correlated with miR-576-5p but positively correlated with CASC9. Downregulation of miR-576-5p restored the effect of CASC9 silencing on AKT3 expression. Therefore, silencing CASC9 could downregulate the expression of AKT3 by reducing the competitive binding of CASC9 to miR-576-5p, thus suppressing CRC cell proliferation and promoting cell apoptosis. In summary, we identified CASC9 as an oncogenic lncRNA in CRC and defined the CASC9/miR-576-5p/AKT3 axis, which might be considered a potential therapeutic target for CRC patients, as a novel molecular mechanism implicated in the proliferation and apoptosis of CRC.


2021 ◽  
Vol 49 (6) ◽  
pp. 030006052110135
Author(s):  
Ying Xing ◽  
Xianhua Sun ◽  
Feng Li ◽  
Xuan Jiang ◽  
Afang Jiang ◽  
...  

Objective Long non-coding RNA (lncRNA) expression is closely related to the pathogenesis and progression of various tumors. In this study, we investigated the mechanisms of lncRNA HOXB cluster antisense RNA 3 (HOXB-AS3), miRNA(miR)-498-5p, and disintegrin and metalloproteinase domain-containing protein 9 (ADAM9) in endometrial carcinoma (EC) cells. Methods The expression levels of lncRNA HOXB-AS3 in EC tissues and cells were detected using RT-qPCR assays. The effects of HOXB-AS3 knockdown on EC cell proliferation and apoptosis were measured using CCK-8 assays, colony formation assays, and flow cytometry. In addition, putative miR-498-5p binding sites were identified in HOXB-AS3 and ADAM9. The targeted relationships were further verified using dual-luciferase reporter and RNA pull-down assays. Results HOXB-AS3 expression was upregulated in EC tissues and cells. EC cell proliferation and viability decreased significantly in HOXB-AS3 knockdown groups. A putative miR-498-5p binding site in HOXB-AS3 was verified. Inhibition of miR-498-5p rescued the effects of HOXB-AS3 knockdown on cell proliferation and apoptosis. Finally, ADAM9 was verified as a direct target gene of miR-498-5p. Conclusions Our results suggest that lncRNA HOXB-AS3 is highly expressed in EC tissues and cells. Downregulation of HOXB-AS3 inhibits cell proliferation and promotes apoptosis in EC cells. HOXB-AS3 can upregulate ADAM9 expression by sponging miR-498-5p.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xianwei He ◽  
Kun Gao ◽  
Shuaihua Lu ◽  
Rongbo Wu

Abstract Background Long non-coding RNA (lncRNA) has been implicated in the progression of osteoarthritis (OA). This study was aimed to explore the role and molecular mechanism of lncRNA HOXA terminal transcriptional RNA (HOTTIP) in the development of OA. Methods The expression of HOTTIP, miR-663a and Fyn-related kinase (FRK) in the OA articular cartilage and OA chondrocyte model induced by IL-1β was determined by qRT-PCR. CCK-8, colony formation and flow cytometry were used to determine the cell proliferation and apoptosis of OA chondrocytes. The specific molecular mechanism of HOTTIP in OA chondrocytes was determined by dual luciferase reporter assay, qRT-PCR, western blotting and RNA pull-down. Results The expression of HOTTIP and FRK were up-regulated, while miR-663a was down-regulated in OA cartilage tissues. Knockdown of HOTTIP decreased the proliferation and induced the apoptosis of OA cartilage model cells, while overexpression of HOTTIP increased the proliferation and reduced the apoptosis of OA cartilage model cells. Moreover, HOTTIP could bind to miR-663a as competitive endogenous RNA. Inhibition of miR-663a expression could alleviate the effect of HOTTIP knockdown on the proliferation and apoptosis of OA cartilage model cells. Furthermore, FRK was found to be a direct target of miR-663a, which could markedly down-regulate the expression of FRK in OA chondrocytes, while HOTTIP could remarkably up-regulate the expression of FRK. In addition, miR-663a inhibition increased the proliferation and reduced the apoptosis of OA cells, while FRK knockdown reversed the effect of miR-663a inhibition on the proliferation and apoptosis of OA cells. Meanwhile, overexpression of miR-663a decreased the proliferation and induced the apoptosis of OA cells, while overexpression of FRK reversed the effect of miR-663a overexpression on the proliferation and apoptosis of OA cells. Conclusion HOTTIP was involved in the proliferation and apoptosis of OA chondrocytes via miR-663a/ FRK axis, and HOTTIP/miR-663a/FRK might be a potential target for the treatment of OA.


2020 ◽  
Author(s):  
Liansheng Zhang ◽  
Yougan Chen ◽  
Zhenjie Wang ◽  
Qiang Xia

Abstract Background: Prostate cancer (PC) is one of the most common malignant tumors. Recently, it has been reported that long noncoding RNAs (lncRNAs) play key roles in tumor progression. Studies have revealed that long non-coding RNA CAR10 (CAR10) can regulate tumor cell behaviors through sponging miR-203. In this study, we examined the effects of CAR10 in PC cells. Methods: Firstly, real time-quantitative polymerase chain reaction (qRT-PCR) was used to explore CAR10 expression in tumor tissues, peripheral blood of PC patients, and PC cells. We used the dual-luciferase reporter gene assay to analyze the relationship between CAR10 and miR-203. Moreover, flow cytometry, MTT assay, and western blot assay were used to determine cell apoptosis, cell viability, and apoptosis-related protein expression. Results: The results showed that CAR10 expression was remarkably higher in PC samples compared with that of control, and CAR10 regulated miR-203 negatively in PC cells. The qRT-PCR results also showed that miR-203 expression was significantly decreased in PC samples. Moreover, knockdown of CAR10 inhibited PC cell viability and promoted cleaved caspase-3 expression but induced PC cell apoptosis and, reduced pro-caspase-3 expression; miR-203 inhibitor reversed these effects. Conclusion: Our study found that CAR10 is a potential oncogene in PC and suggests that CAR10 inhibition could inhibit PC cell viability but promote PC cell apoptosis through regulating miR-203 expression. Our results show that CAR10 is a potential target for the treatment of PC.


Author(s):  
Zijian Shen ◽  
Haigang Li

BACKGROUND: Long non-coding RNAs (lncRNAs) are found to involve in modulating the development of atherosclerosis (AS). But the molecular mechanism of lncRNA growth-arrest specific transcript 5 (GAS5) in AS is not fully understood. METHODS: QRT-PCR was performed to measure the abundances of GAS5, miR-128-3p and fibulin 2 (FBLN2). Oxidized low-density lipoprotein (ox-LDL)-treated THP-1 cells were employed as cell models of AS. The cell proliferation and apoptosis were analyzed using CCK-8 and Flow cytometry assays, respectively. Levels of all protein were examined by western blot. The interaction among GAS5, miR-128-3p and FBLN2 was confirmed via dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. RESULTS: GAS5 was elevated and miR-128-3p was decreased in the serum of patients with AS and ox-LDL-stimulated THP-1 cells. Ox-LDL stimulation inhibited proliferation and induced apoptosis of THP-1 cells. Meanwhile, GAS5 directly targeted miR-128-3p and inversely modulated its expression. Importantly, GAS5 depletion facilitated cell proliferation and impaired apoptosis in ox-LDL-induced THP-1 cells. Additionally, GAS5 augmented FBLN2 expression through sponging miR-128-3p, and miR-128-3p facilitated proliferation and retarded apoptosis of ox-LDL-induced THP-1 cells by targeting FBLN2. CONCLUSION: GAS5 knockdown promoted the growth of ox-LDL-induced THP-1 cells through down-modulating FBLN2 and increasing miR-128-3p, suggesting the potential value of GAS5 for treatment of AS.


2020 ◽  
Author(s):  
Tao Zhang ◽  
Lijian Chen ◽  
Xundi Xu ◽  
Chao Shen

Abstract OBJECTIVE : Patients with advanced gallbladder cancer (GBC) have a lower 5-year survival rate. Long non-coding RNA urothelial carcinoma associated 1 (UCA1) and miR-613 are involved in the progression of various cancers. This study was to explore the regulatory mechanism between UCA1 and miR-613 in GBC. METHODS: The expression levels of UCA1, miR-613, and SPOCK1 mRNA were detected using qRT-PCR. Cell proliferation, migration, invasion, and apoptosis were determined with MTT, transwell, or flow cytometry assays. The levels of SPOCK1 protein, Bax, cleaved-casp-3, and Bcl-2 were determined by western blot analysis. The relationship between miR-613 and UCA1 or SPOCK1 was verified via dual-luciferase reporter and/or RNA immunoprecipitation (RIP) assays. The role of UCA1 in vivo was confirmed by xenograft assay. RESULTS: UCA1 and SPOCK1 were upregulated while miR-613 was downregulated in GBC tissues and cells. UCA1 silencing blocked tumor growth in vivo, impeded cell proliferation, migration, invasion, and induced cell apoptosis in GBC cells in vitro. Notably, UCA1 acted as a sponge for miR-613, which targeted SPOCK1 in GBC cells. Moreover, miR-613 repressed cell proliferation, migration, invasion, and accelerated cell apoptosis in GBC cells. UCA1 enhancement reversed miR-613 mimic-mediated influence on proliferation, migration, invasion, and apoptosis of GBC cells. UCA1 regulated SPOCK1 expression through miR-613. Furthermore, SPOCK1 elevation overturned UCA1 silencing-mediated the malignant behaviors of GBC cells. CONCLUSION: UCA1 knockdown suppressed GBC progression via downregulating SPOCK1 via sponging miR-613, providing an evidence for UCA1 as a target for GBC treatment.


2021 ◽  
pp. 1-11
Author(s):  
Min Wei ◽  
Youguo Chen ◽  
Wensheng Du

BACKGROUND: Cervical cancer (CC) is the most common form of gynecological malignancy. Long intergenic non-protein coding RNA 858 (LINC00858) has been identified to participate in multiple cancers. However, the role and mechanism of LINC00858 in CC cells are still elusive. AIM: The aim of this study is to explore the biological functions and mechanisms of LINC00858 in CC cells. METHODS: RT-qPCR analysis was used to examine the expression of LINC00858 in CC cells. EdU and colony formation assay were utilized to assess cell proliferation. TUNEL assay and flow cytometry assay were conducted to assess cell apoptosis. The mechanism regarding LINC00858 was certified through RNA pull down, RIP and luciferase reporter assays. RESULTS: The up-regulated LINC00858 was detected in CC cells. Reduction of LINC00858 effectively subdued CC cells proliferation and stimulated cell apoptosis. LINC00858 was determined to bind with miR-3064-5p and up-regulate VMA21 in CC cells. In rescue assays, miR-3064-5p down-regulation and VMA21 up-regulation were able to counteract the effect caused by LINC00858 decrease on CC cell proliferation and apoptosis. CONCLUSION: LINC00858 enhances cell proliferation, while restraining cell apoptosis in CC through targeting miR-3064-5p/VMA21 axis, implying that LINC00858 may serve as a promising therapeutic target for CC.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xibao Hu ◽  
Lei Zhang ◽  
Jingjing Tian ◽  
Junhong Ma

Abstract Background and objectives Long non-coding RNA (lncRNA) prostate androgen-regulated transcript 1 (PART1) was previously shown to exert an oncogenic role in several human cancers. However, whether PART1 is associated with the malignant progression of pancreatic cancer remains unclear. In the current study, we aimed to identify the role and potential mechanism of PART1 in pancreatic cancer. Methods qRT-PCR was applied to detect PART1 expression in 45 cases of pancreatic cancer patients. The chi-square test was performed to assess the association between PART1 expression and clinicopathologic features, and Kaplan-Meier method was applied to evaluate overall survival. In vitro CCK-8, transwell invasion, and flow cytometry assays were applied to detect the effects of PART1 on cell proliferation, invasion, and apoptosis, respectively. Luciferase reporter and RNA immunoprecipitation assays were used to identify the regulatory mechanism between PART1 and miR-122. Results PART1 expression was upregulated in pancreatic cancer tissues and cell lines. High PART1 expression was closely correlated with tumor size, T classification, clinical stage, and vascular invasion, and predicted a poor overall survival. PART1 knockdown significantly suppressed cell proliferation and invasion abilities of pancreatic cancer but promoted cell apoptosis. PART1 was found to serve as a molecular sponge of miR-122, and miR-122 inhibition partially reversed the inhibitory phenotypes of PART1 knockdown on pancreatic cancer cells. Conclusions PART1 promotes the malignant progression of pancreatic cancer by sponging miR-122. The PART1/miR-122 axis might be a promising target for anticancer therapy in patients with pancreatic cancer.


Sign in / Sign up

Export Citation Format

Share Document