scholarly journals Isopropyl 3-(3, 4-dihydroxyphenyl)-2-hydroxypropanoate, A Novel Metabolite From Salvia Miltiorrhiza, Protects Against LPS-induced Acute Lung Injury in Mice by Attenuating the Canonical and Non-canonical Inflammatory Pathways of Pyroptosis

Author(s):  
Mei-Ling Zhang ◽  
Meng Wang ◽  
Jian Chen ◽  
Yan-Jie Liu ◽  
Xiao-Hui Zheng ◽  
...  

Abstract BackgroundThe pathological characteristics of acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) are pulmonary edema resulting from pulmonary permeability increasing. The main cause is uncontrolled inflammatory response leading to the damage of pulmonary vascular endothelial and alveolar epithelial barriers. However, there has not been effective drugs against ALI. In this study, we investigated the function of Isopropyl 3-(3, 4-dihydroxypheny l)-2-hydroxypropanoate (IDHP), a novel metabolite of Danshen dripping pill having anti-inflammatory effect, in lipopolysaccharide (LPS) induced ALI in mice, and its underlying mechanisms.MethodsPretreatment of IDHP in LPS-induced acute lung injury in mice were observed on survival rate, pulmonary morphologic changes, total protein content in bronchoalveolar lavage fluid (BALF), and inflammatory cytokines in lung tissue and BALF. To further explore its mechanism on ALI, THP-1 macrophages was studied to analyse pyroptosis related proteins and co-culture with epithelial or endothelial cells to assess protection function of IDHP in vitro.ResultsAs revealed by survival study, pretreatment with high dose of IDHP reduced the mortality of mice from ALI. IDHP pretreatment significantly improved LPS-induced lung pathological changes, reduced protein leakage and lung myeloperoxidase activity. IDHP also inhibited the release of inflammatory mediators TNFα, IL-1β, IL-6 and IL-18 in BALF and lung tissue. Meanwhile, IDHP decreased the expression of active-caspase1 (in canonical pyroptosis pathway), caspase4/5 (non-canonical pyroptosis pathway), Nrlp3, mature IL-1β, mature IL-18, Asc speck formation, and cleaved Gsdmd, all these are required for pyroptosis, in LPS stimulated THP-1 macrophages. Moreover, IDHP also decreased ROS production in LPS-stimulated THP-1 macrophages, inhibited the expression of tight junction proteins (Occludin, Zo-1) in endothelial cells, and decreased lactate dehydrogenase activity in supernatants of epithelial or endothelial cells, co-cultured with LPS-stimulated THP-1 macrophages. ConclusionsPretreatment of IDHP improves survival rate and ameliorates LPS-induced ALI in mice possibly via inhibiting canonical and non-canonical pyroptosis pathways.

2021 ◽  
Author(s):  
Mei-Ling Zhang ◽  
Meng Wang ◽  
Jian Chen ◽  
Yan-Jie Liu ◽  
Xiao-Hui Zheng ◽  
...  

Abstract Background: The pathological characteristics of acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) are pulmonary edema resulting from pulmonary permeability increasing. The main cause is uncontrolled inflammatory response leading to the damage of pulmonary vascular endothelial and alveolar epithelial barriers. However, there has not been effective drugs against ALI. In this study, we investigated the function of Isopropyl 3-(3, 4-dihydroxypheny l)-2-hydroxypropanoate (IDHP), a novel metabolite of Danshen dripping pill having anti-inflammatory effect, in lipopolysaccharide (LPS) induced ALI in mice, and its underlying mechanisms.Methods: Pretreatment of IDHP in LPS-induced acute lung injury in mice were observed on survival rate, pulmonary morphologic changes, total protein content in bronchoalveolar lavage fluid (BALF), and inflammatory cytokines in lung tissue and BALF. To further explore its mechanism on ALI, THP-1 macrophages was studied to analyse propotosis related proteins and co-culture with epithelial or endothelial cells to assess protection function of IDHP in vitro.Results: As revealed by survival study, pretreatment with high dose of IDHP reduced the mortality of mice from ALI. IDHP pretreatment significantly improved LPS-induced lung pathological changes, reduced protein leakage and lung myeloperoxidase activity. IDHP also inhibited the release of inflammatory mediators TNFα, IL-1β, IL-6 and IL-18 in BALF and lung tissue. Meanwhile, IDHP decreased the expression of active-caspase1 (in canonical pyroptosis pathway), caspase4/5 (non-canonical pyroptosis pathway), Nrlp3, mature IL-1β, mature IL-18, Asc speck formation, and cleaved Gsdmd, all these are required for pyroptosis, in LPS stimulated THP-1 macrophages. Moreover, IDHP also decreased ROS production in LPS-stimulated THP-1 macrophages, inhibited the expression of tight junction proteins (Occludin, Zo-1) in endothelial cells, and decreased lactate dehydrogenase activity in supernatants of epithelial or endothelial cells, co-cultured with LPS-stimulated THP-1 macrophages. Conclusions: Pretreatment of IDHP improves survival rate and ameliorates LPS-induced ALI in mice possibly via inhibiting canonical and non-canonical pyroptosis pathways.


2020 ◽  
Vol 19 (3) ◽  
pp. 533-539
Author(s):  
Qinghai You ◽  
Jinmei Wang ◽  
Lijuan Jiang ◽  
Yuanmin Chang ◽  
Wenmei Li

Purpose: To investigate the therapeutic effect of aqueous extract of Aconitum carmichaelii Debeaux (AEACD) on sepsis-induced acute lung injury (ALI), as well as explore the underlying mechanism of action. Methods: C57BL/6 mice were treated with AEACD by gavage (4.0 g/kg/day) for 5 days before cecal ligation and puncture (CLP) challenge. After 24 h, the pathological morphology of lung tissue and the biochemical parameters in bronchoalveolar lavage fluid (BALF) were determined by H&E staining and enzyme-linked immunosorbent assay (ELISA). Furthermore, the total protein content and lactate dehydrogenase (LDH) level of BALF, as well as the oxidative biomarkers (malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD)) were evaluated in the lung homogenates by ELISA assay. The levels of pro-inflammatory cytokines, TNFα, IL-1β, and IL-6, in lung tissue were measured by qRT-PCR or ELISA. Finally, key proteins in Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway in lung tissue were evaluated by western blot. Results: CLP challenge induced abnormal changes in the histological structures of lung tissue, lung wet-to-dry weight (W/D) ratio, protein content and LDH levels of BALF, which were remarkably reversed by AEACD. In addition, AEACD decreased MDA levels, and increased GSH levels and SOD activity in the lung tissue of CLP–treated mice (p < 0.05). Furthermore, AEACD attenuated the CLP challengeinduced upregulation of TNFα, IL-1β, and IL-6. Finally, AEACD inactivated TLR4/NF-κB pathway by upregulating IκBα and downregulating TLR4 and phosphorylated-p65 levels. Conclusion: AEACD administration protects mice against sepsis-induced ALI through the regulation of oxidative stress and inflammatory responses in lung tissues. The underlying mechanism occurs by inhibiting TLR4/NF-κB signaling pathway. Keywords: Aconitum carmichaelii Debeaux, Acute lung injury, Sepsis, TLR4, NF-κB


2020 ◽  
Vol 19 (7) ◽  
pp. 1429-1433
Author(s):  
Jihong Shu ◽  
Zhenjiao Fang ◽  
Xinjun Xiong

Purpose: To investigate the effect of penehyclidine hydrochloride (PHC) on interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), hypoxia inducible factor-1α (HIF-1α), and oxidative stress levels in lung tissues of acute lung injury (ALI) neonatal rats.Methods: 40 male Sprague-Dawley (SD) rats were assigned to model, low-dose PHC, high-dose PHC, and control groups (n = 10). Levels of IL-6, TNF-α and HIF-1α were evaluated by enzyme-linked immunosorbent assay (ELISA). Pulmonary lesions were determined histologically using H&E staining.Results: The lung tissue levels of IL-6, TNF-α and HIF-1α were significantly higher in model rats than in control rats, and significantly lower in PHC-treated rats than in model group, with decrease in levels as PHC dose increased (p < 0.05). The lung tissue activity of MPO and level of MDA in model rats were significantly higher than those in control rats, but significantly lower in the lung tissues of the two PHC groups than in the model group; decrease in levels occurred as PHC dose increased (p < 0.05).Conclusion: PHC decreases the lung and serum levels of IL-6, TNF-α and HIF-1α in a rat model of ALI, and mitigates pulmonary oxidative stress and lung tissue damage. Thus, penehyclidine hydrochloride may be useful to mitigate ALI-induced damage in patients. However, further studies and clinical trials are required to ascertain this Keywords: Penehyclidine hydrochloride, Alveolar septum, Acute lung injury, Inflammatory cells, IL-6, TNF-α, HIF-1α, Oxidative stress


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Ruirui Li ◽  
Tao Ren ◽  
Jianqiong Zeng

The aim of our study was to assess the effects of mitochondrial coenzyme Q (MitoQ) on sepsis-induced acute lung injury (ALI) and investigate its possible mechanisms. The cecal ligation and puncture (CLP) method was used to establish a septic ALI model. Rats were randomly divided into Con group, CLP group, MitoQ group, and MitoQ + LY294002 group. The survival rate of the rats was recorded, and the survival rate curve was plotted. Moreover, the ratio of wet/dry weight (W/D) in lung tissue was measured. The activity of myeloperoxidase (MPO) was measured by using the MPO colorimetric activity assay kit. The levels of high-mobility group box 1 (HMGB1) and interleukin-6 (IL-6), macrophage inflammatory protein 2 (MIP2), and keratinocyte chemoattractant (KC) were analyzed by ELISA. The histopathological changes were measured by HE staining, and the lung injury was scored. TUNEL assay was applied to detect the apoptotic cells in lung tissue. The protein expressions were detected by western blot. MitoQ increased the survival rate and alleviated pulmonary edema in septic ALI rats. In addition, MitoQ inhibited the MPO activity and decreased the levels of HMGB1 and IL-6. After treatment with MitoQ, alveolar wall edema, inflammatory cell infiltration, and red blood cell exudation were relieved. MitoQ inhibited cell apoptosis in lung tissue of septic ALI rats. Meanwhile, MitoQ treatment remarkedly increased the expression of p-Akt, p-GSK-3β, and p-mTOR but decreased Bax, caspase-3, caspase-9, Beclin-1, and LC-3II/LC-3I. The effects of MitoQ were significantly reversed by the PI3K inhibitor (LY294002). Our study demonstrated that MitoQ could protect sepsis-induced acute lung injury by activating the PI3K/Akt/GSK-3β/mTOR pathway in rats.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1620
Author(s):  
Hossam M. Abdallah ◽  
Dina S. El-Agamy ◽  
Sabrin R. M. Ibrahim ◽  
Gamal A. Mohamed ◽  
Wael M. Elsaed ◽  
...  

Euphorbia cuneata (EC; Euphorbiaceae), which widely grows in Saudi Arabia and Yemen, is used traditionally to treat pain and inflammation. This study aimed to evaluate the protective anti-inflammatory effect of a standardized extract of EC against lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and the possible underlying mechanism(s) of this pharmacologic activity. ALI was induced in male Balb/c mice using intraperitoneal injection of LPS. A standardized total methanol extract of EC or dexamethasone was administered 5 days prior to LPS challenge. Bronchoalveolar fluid (BALF) and lung samples were collected for analysis. The results demonstrated the protective anti-inflammatory effect of EC against LPS-induced ALI in mice. Standardized EC contained 2R-naringenin-7-O-β-glucoside (1), kaempferol-7-O-β-glucoside (2), cuneatannin (3), quercetin (4), and 2R-naringenin (5) in concentrations of 6.16, 4.80, 51.05, 13.20, and 50.00 mg/g of extract, respectively. EC showed a protective effect against LPS-induced pulmonary damage. EC reduced lung wet/dry weight (W/D) ratio and total protein content in BALF, indicating attenuation of the pulmonary edema. Total and differential cell counts were decreased in EC-treated animals. Histopathological examination confirmed the protective effect of EC, as indicated by an amelioration of LPS-induced lesions in lung tissue. EC also showed a potent anti-oxidative property as it decreased lipid peroxidation and increased the antioxidants in lung tissue. Finally, the anti-inflammatory activity of EC was obvious through its ability to suppress the activation of nuclear factor-κB (NF-κB), and hence its reduction of the levels of downstream inflammatory mediators. In conclusion, these results demonstrate the protective effects of EC against LPS-induced lung injury in mice, which may be due to its antioxidative and anti-inflammatory activities.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xia Liu ◽  
Fei Ai ◽  
Hui Li ◽  
Qin Xu ◽  
Liyan Mei ◽  
...  

Shenfu injection (SFI), a Chinese herbal medicine with substances extracted from Ginseng Radix et Rhizoma Rubra and Aconiti Lateralis Radix Praeparata, is widely used as an anti-inflammatory reagent to treat endotoxin shock in China. However, the mechanism of SFI in endotoxin shock remains to be illuminated. High mobility group box 1 (HMGB1), a vital inflammatory factor in the late stage of endotoxin shock, may stimulate multiple signalling cascades, including κB (NF-κB), a nuclear transcription factor, as well as tumour necrosis factor (TNF)-α and interleukin (IL)-1β, among others in the overexpression of downstream proinflammatory cytokines. An investigation into the effects of SFI on the inhibition of the HMGB1-NF-κB pathway revealed the contribution of SFI to acute lung injury (ALI) in a rat model of endotoxin shock. To assess the anti-inflammatory activity of SFI, 5 ml/kg, 10 ml/kg, or 15 ml/kg of SFI was administered to different groups of rats following an injection of LPS, and the mean arterial pressure (MAP) at 5 h and the survival rate at 72 h were measured. 24 h after LPS injection, we observed pathological changes in the lung tissue and measured the mRNA expression, production, translocation, and secretion of HMGB1, as well as the expression of the NF-κB signal pathway-related proteins inhibitor of NF-κB (IκB)-α, P50, and P65. We also evaluated the regulation of SFI on the secretion of inflammatory factors including interleukin-1 beta (IL-1β) and TNF-α. SFI effectively prevented the drop in MAP, relieved lung tissue damage, and increased the survival rate in the endotoxin shock model in dose-dependent manner. SFI inhibited the transcription, expression, translocation, and secretion of HMGB1, increased the expression of toll-like receptor (TLR4), increased the production of IκB-α, and decreased the levels of P65, P50, and TNF-α in the lung tissue of endotoxin shock rats in a dose-dependent manner. Furthermore, SFI decreased the secretion of proinflammatory cytokines TNF-α and IL-1β. In summary, SFI improves the survival rate of endotoxin shock, perhaps through inhibiting the HMGB1-NF-κB pathway and thus preventing cytokine storm.


2020 ◽  
Vol 18 (2) ◽  
pp. 201-206
Author(s):  
Qiu Nan ◽  
Xu Xinmei ◽  
He Yingying ◽  
Fan Chengfen

Sepsis, with high mortality, induces deleterious organ dysfunction and acute lung injury. Natural compounds show protective effect against sepsis-induced acute lung injury. Juglone, a natural naphthoquinone, demonstrates pharmacological actions as a pro-apoptotic substrate in tumor treatment and anti-inflammation substrate in organ injury. In this study, the influence of juglone on sepsis-induced acute lung injury was investigated. First, a septic mice model was established via cecal ligation and puncture, and then verified via histopathological analysis of lung tissues, the wet/dry mass ratio and myeloperoxidase activity was determined. Cecal ligation and puncture could induce acute lung injury in septic mice, as demonstrated by alveolar damage and increase of wet/dry mass ratio and myeloperoxidase activity. However, intragastric administration juglone attenuated cecal ligation and puncture-induced acute lung injury. Secondly, cecal ligation and puncture-induced increase of inflammatory cells in bronchoalveolar lavage fluid was also alleviated by the administration of juglone. Similarly, the protective effect of juglone against cecal ligation and puncture-induced acute lung injury was accompanied by a reduction of pro-inflammatory factor secretion in bronchoalveolar lavage fluid and lung tissues. Cecal ligation and puncture could activate toll-like receptor 4/nuclear factor-kappa B signaling pathway, and administration of juglone suppressed toll-like receptor 4/nuclear factor-kappa B activation. In conclusion, juglone attenuated cecal ligation and puncture-induced lung damage and inflammatory response through inactivation of toll-like receptor 4/nuclear factor-kappa B, suggesting a potential therapeutic strategy in the treatment of sepsis-induced acute lung injury.


2016 ◽  
Vol 310 (11) ◽  
pp. L1185-L1198 ◽  
Author(s):  
Toshio Suzuki ◽  
Yuji Tada ◽  
Rintaro Nishimura ◽  
Takeshi Kawasaki ◽  
Ayumi Sekine ◽  
...  

Pulmonary vascular endothelial function may be impaired by oxidative stress in endotoxemia-derived acute lung injury. Growing evidence suggests that endothelial-to-mesenchymal transition (EndMT) could play a pivotal role in various respiratory diseases; however, it remains unclear whether EndMT participates in the injury/repair process of septic acute lung injury. Here, we analyzed lipopolysaccharide (LPS)-treated mice whose total number of pulmonary vascular endothelial cells (PVECs) transiently decreased after production of reactive oxygen species (ROS), while the population of EndMT-PVECs significantly increased. NAD(P)H oxidase inhibition suppressed EndMT of PVECs. Most EndMT-PVECs derived from tissue-resident cells, not from bone marrow, as assessed by mice with chimeric bone marrow. Bromodeoxyuridine-incorporation assays revealed higher proliferation of capillary EndMT-PVECs. In addition, EndMT-PVECs strongly expressed c- kit and CD133. LPS loading to human lung microvascular endothelial cells (HMVEC-Ls) induced reversible EndMT, as evidenced by phenotypic recovery observed after removal of LPS. LPS-induced EndMT-HMVEC-Ls had increased vasculogenic ability, aldehyde dehydrogenase activity, and expression of drug resistance genes, which are also fundamental properties of progenitor cells. Taken together, our results demonstrate that LPS induces EndMT of tissue-resident PVECs during the early phase of acute lung injury, partly mediated by ROS, contributing to increased proliferation of PVECs.


Transfusion ◽  
2020 ◽  
Vol 60 (7) ◽  
pp. 1434-1442
Author(s):  
Jiajia Qiao ◽  
Rui He ◽  
Yonghua Yin ◽  
Li Tian ◽  
Ling Li ◽  
...  

2018 ◽  
Vol 124 (4) ◽  
pp. 899-905 ◽  
Author(s):  
Nathan D. Putz ◽  
Ciara M. Shaver ◽  
Kobina Dufu ◽  
Chien-Ming Li ◽  
Qing Xu ◽  
...  

Acute respiratory distress syndrome (ARDS) is characterized by lung inflammation and pulmonary edema, leading to arterial hypoxemia and death if the hypoxemia is severe. Strategies to correct hypoxemia have the potential to improve clinical outcomes in ARDS. The goal of this study was to evaluate the potential of hemoglobin modification as a novel therapy for ARDS-induced hypoxemia. The therapeutic effect of two different doses of GBT1118, a compound that increases the oxygen affinity of hemoglobin, was evaluated in a murine model of acute lung injury induced by intratracheal LPS instillation 24 h before exposure to 5% or 10% hypoxia ( n = 8–15 per group). As expected, administration of GBT1118 to mice significantly increased the oxygen affinity of hemoglobin. Compared with mice receiving vehicle control, mice treated with GBT1118 had significantly lower mortality after LPS + 5% hypoxia (47% with vehicle vs. 22% with low-dose GBT1118, 13% with high-dose GBT1118, P = 0.032 by log rank) and had reduced severity of illness. Mice treated with GBT1118 showed a sustained significant increase in SpO2 over 4 h of hypoxia exposure. Treatment with GBT1118 did not alter alveolar-capillary permeability, bronchoalveolar lavage (BAL) inflammatory cell counts, or BAL concentrations of IL-1β, TNF-α, or macrophage inflammatory protein-1α. High-dose GBT1118 did not affect histological lung injury but did decrease tissue hypoxia as measured intensity of pimonidazole (Hypoxyprobe) staining in liver ( P = 0.043) and kidney ( P = 0.043). We concluded that increasing the oxygen affinity of hemoglobin using GBT1118 may be a novel therapy for treating hypoxemia associated with acute lung injury. NEW & NOTEWORTHY In this study, we show that GBT1118, a compound that increases hemoglobin affinity for oxygen, improves survival and oxygen saturation in a two-hit lung injury model of intratracheal LPS without causing tissue hypoxia. Modulation of hemoglobin oxygen affinity represents a novel therapeutic approach to treatment of acute lung injury and acute respiratory distress syndrome, conditions characterized by hypoxemia.


Sign in / Sign up

Export Citation Format

Share Document