scholarly journals TRF-Val-CAC-016 Modulates the Transduction of CACNA1d-Mediated MAPK Signaling Pathways to Suppress the Proliferation of Gastric Carcinoma

Author(s):  
Weiguo Xu ◽  
Junyu Zheng ◽  
Xiao Wang ◽  
Bin Zhou ◽  
Huanqiu Chen ◽  
...  

Abstract Background: As a new kind of non-coding RNAs (ncRNAs), tRNA derivatives play an important role in gastric carcinoma (GC). Nevertheless, the underlying mechanism tRNA derivatives were involved in was rarely illustrated. Methods: We screened out the tRNA derivative, tRF-Val-CAC-016, based on the tsRNA sequencing and demonstrated the effect tRF-Val-CAC-016 exerted on GC proliferation in vitro and in vivo. We applied Dual-luciferase reporter assay, RIP assay, and bioinformatic analysis to discover the downstream target of tRF-Val-CAC-016. Then CACNA1d was selected, and the oncogenic characteristics were verified. Subsequently, we detected the possible regulation of the canonical MAPK signaling pathway to further explore the downstream mechanism of tRF-Val-CAC-016. Results: As a result, we found that tRF-Val-CAC-016 was low-expressed in GC, and upregulation of tRF-Val-CAC-016 could significantly suppress the proliferation of GC cell lines. Meanwhile, tRF-Val-CAC-016 regulated the canonical MAPK signaling pathway by targeting CACNA1d. Conclusions: tRF-Val-CAC-016 modulates the transduction of CACNA1d-mediated MAPK signaling pathways to suppress the proliferation of gastric carcinoma. This study discussed the function and mechanism of tRF-Val-CAC-016 in GC for the first time. The pioneering work has contributed to our present understanding of tRNA derivative, which might provide an alternative mean for the targeted therapy of GC.

2021 ◽  
Vol 11 ◽  
Author(s):  
Weiguo Xu ◽  
Bin Zhou ◽  
Juan Wang ◽  
Li Tang ◽  
Qing Hu ◽  
...  

Transfer RNA-derived RNA fragments (tRFs) belong to non-coding RNAs (ncRNAs) discovered in most carcinomas. Although some articles have demonstrated the characteristics of tRFs in gastric carcinoma (GC), the underlying mechanisms still need to be elucidated. Meanwhile, it was reported that the MAPK pathway was momentous in GC progression. Thus we focused on investigating whether tRF-Glu-TTC-027 could act as a key role in the progression of GC with the regulation of the MAPK pathway. We collected the data of the tRNA-derived fragments expression profile from six paired clinical GC tissues and corresponding adjacent normal samples in this study. Then we screened tRF-Glu-TTC-027 for analysis by using RT-PCR. We transfected GC cell lines with tRF-Glu-TTC-027 mimics or mimics control. Then the proliferation, migration, and invasion assays were performed to assess the influence of tRF-Glu-TTC-027 on GC cell lines. Fluorescence in situ hybridization assay was conducted to confirm the cell distribution of tRF-Glu-TTC-027. We confirmed the mechanism that tRF-Glu-TTC-027 influenced the MAPK signaling pathway and observed a strong downregulation of tRF-Glu-TTC-027 in clinical GC samples. Overexpression of tRF-Glu-TTC-027 suppressed the malignant activities of GC in vitro and in vivo. MAPK signaling pathway was confirmed to be a target pathway of tRF-Glu-TTC-027 in GC by western blot. This is the first study to show that tRF-Glu-TTC-027 was a new tumor-suppressor and could be a potential object for molecular targeted therapy in GC.


2020 ◽  
Vol Volume 14 ◽  
pp. 2667-2684 ◽  
Author(s):  
Xing Zhou ◽  
Xingchun Wu ◽  
Luhui Qin ◽  
Shunyu Lu ◽  
Hongliang Zhang ◽  
...  

2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Yunjia Yu ◽  
Yang Zhang ◽  
Shuyao Wang ◽  
Wei Liu ◽  
Cui Hao ◽  
...  

Abstract Background Patchouli alcohol (PA) is a tricyclic sesquiterpene extracted from Pogostemonis Herba, which is a traditional Chinese medicine used for therapy of inflammatory diseases. Recent studies have shown that PA has various pharmacological activities, including anti-bacterial and anti-viral effects. Methods In this study, the anti-influenza virus (IAV) activities and mechanisms were investigated both in vitro and in vivo. The inhibitory effects of PA against IAV in vitro were evaluated by plaque assay and immunofluorescence assay. The neuraminidase inhibition assay, hemagglutination inhibition (HI) assay, and western blot assay were used to explore the anti-viral mechanisms. The anti-IAV activities in vivo were determined by mice pneumonia model and HE staining. Results The results showed that PA significantly inhibited different IAV strains multiplication in vitro, and may block IAV infection through inactivating virus particles directly and interfering with some early stages after virus adsorption. Cellular PI3K/Akt and ERK/MAPK signaling pathways may be involved in the anti-IAV actions of PA. Intranasal administration of PA markedly improved mice survival and attenuated pneumonia symptoms in IAV infected mice, comparable to the effects of Oseltamivir. Conclusions Therefore, Patchouli alcohol has the potential to be developed into a novel anti-IAV agent in the future.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Feng Jiao ◽  
Wang Tang ◽  
He Huang ◽  
Zhaofei Zhang ◽  
Donghua Liu ◽  
...  

Bone marrow-derived mesenchymal stem cells (BMSCs) are widely used in tissue engineering for regenerative medicine due to their multipotent differentiation potential. However, their poor migration ability limits repair effects. Icariin (ICA), a major component of the Chinese medical herb Herba Epimedii, has been reported to accelerate the proliferation, osteogenic, and chondrogenic differentiation of BMSCs. However, it remains unknown whether ICA can enhance BMSC migration, and the possible underlying mechanisms need to be elucidated. In this study, we found that ICA significantly increased the migration capacity of BMSCs, with an optimal concentration of 1 μmol/L. Moreover, we found that ICA stimulated actin stress fiber formation in BMSCs. Our work revealed that activation of the MAPK signaling pathway was required for ICA-induced migration and actin stress fiber formation. In vivo, ICA promoted the recruitment of BMSCs to the cartilage defect region. Taken together, these results show that ICA promotes BMSC migration in vivo and in vitro by inducing actin stress fiber formation via the MAPK signaling pathway. Thus, combined administration of ICA with BMSCs has great potential in cartilage defect therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Juan Duan ◽  
Xuantao Hu ◽  
Tao Li ◽  
Gen Wu ◽  
Pengcheng Dou ◽  
...  

Background: Aseptic loosening of prosthesis (ALP) is one of the most common long-term complications of knee and hip arthroplasty. Wear particle-induced osteoclastogenesis and subsequent periprosthetic osteolysis account for the morbidity of ALP. Here, we investigate the potential of cimifugin (CIM), a natural extract from Cimicifuga racemosa and Saposhnikovia divaricata, as a bone-protective drug in the treatment of ALP.Method: First, we performed cell viability and osteoclast formation assays to assess the effect of noncytotoxic CIM on osteoclast differentiation in vitro. Bone slice resorption and F-actin ring immunofluorescence assays were adopted to assess the effects of CIM on bone-resorption function. Then, quantitative real-time polymerase chain reaction (qRT–PCR) analysis was performed to further assess the repressive effects of CIM on osteoclastogenesis at the gene expression level. To elucidate the mechanisms underlying the above findings, Western blot and luciferase reporter gene assays were used to assess the regulatory effects of CIM on the NF-κB and MAPK signaling pathways. Moreover, a Ti particle-induced murine calvarial osteolysis model and subsequent histomorphometric analysis via micro-CT and immunohistochemical staining were used to elucidate the effect of CIM on periprosthetic osteolysis in vivo.Result: CIM dose-dependently inhibited both bone marrow-derived macrophage (BMM)- and RAW264.7 cell-derived osteoclastogenesis and bone resorption pit formation in vitro, which was further supported by the reduced expression of F-actin and osteoclast-specific genes. According to the Western blot analysis, inhibition of IκBα phosphorylation in the NF-κB signaling pathway, not the phosphorylation of MAPKs, was responsible for the suppressive effect of CIM on osteoclastogenesis. Animal experiments demonstrated that CIM alleviated Ti particle-induced bone erosion and osteoclast accumulation in murine calvaria.Conclusion: The current study suggested for the first time that CIM can inhibit RANKL-induced osetoclastogenesis by suppressing the NF-κB signaling pathway in vitro and prevent periprosthetic osteolysis in vivo. These findings suggest the potential of CIM as a therapeutic in ALP.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Hai-wang Wu ◽  
Yi-hui Feng ◽  
Dong-ying Wang ◽  
Wei-yu Qiu ◽  
Qing-ying Yu ◽  
...  

For centuries, the Chinese herb Cuscuta chinensis has been applied clinically for abortion prevention in traditional Chinese medicine (TCM). Total flavones extracted from Cuscuta chinensis (TFCC) are one of the active components in the herb and also display anti-abortion effect similar to the unprocessed material. However, how TFCC exerts the anti-abortion effect remains largely unknown. In this study, we aim at characterizing the anti-abortion effects of TFCC and its underlying molecular mechanism in vitro and in vivo using human primary decidua cells and a mifepristone-induced abortion model in rat, respectively. The damage to the decidua caused by mifepristone in vivo was reversed by TFCC treatment in a dosage-dependent manner. High dosage of TFCC significantly upregulated the expression of estrogen receptor (ER), progesterone receptor (PR), and prolactin receptor (PRLR) in decidua tissue but downregulated the expression of p-ERK. Furthermore, we detected higher level of p-ERK and p-p38 in primary decidua cells from spontaneous abortion while treatment by TFCC downregulated their expression. Our results suggest TFCC mediates its anti-abortion effect by interfering with MAPK signaling pathway.


2017 ◽  
Vol 41 (6) ◽  
pp. 2307-2318 ◽  
Author(s):  
Xiao-Jian Jia ◽  
Xi Li ◽  
Feng Wang ◽  
Han-Qing Liu ◽  
Da-Jun Zhang

Background/Aims: This study aimed to investigate the anti-inflammatory activity of Berbamine (BER), a bisbenzylisoquinoline alkaloid extracted from Berberis amurensis (Xiao Bo An), and the underlying mechanisms. Methods: Macrophages and neutrophils were treated with BER in vitro and stimulated with LPS and fMLP. The effects of BER on the expression of pro-inflammatory mediators in macrophages were evaluated with quantitative RT-PCR and ELISA. The effects of BER on the activation and superoxide release of neutrophils were determined with flow cytometry and WST-1 reduction test. The inhibitory effects of BER on the activation of signaling pathways related to inflammatory response in macrophages were evaluated by western blot analysis. In addition, a mouse peritonitis model was made by peritoneal injection of thioglycollate medium and anti-inflammatory effects of BER were investigated in vivo by quantitative analysis of pro-inflammatory factor production and leukocyte exudation. Results: BER significantly inhibited inflammatory factor expression by LPS-stimulated macrophages and suppressed activation and superoxide release of fMLP-stimulated neutrophils. In the mouse peritonitis model, BER significantly inhibited the activation of macrophages and exudation of neutrophils. According to analysis, BER significantly suppressed phosphorylation of NF-κB and MAPK (JNK and ERK1/2) signaling pathways in LPS-stimulated macrophages. Conclusions: Collectively, data from this study suggest that BER has anti-inflammatory potential, which is effected via inhibition of NF-κB and MAPK signaling pathways, and thus holds promise for treatment of inflammatory disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mingxin Dong ◽  
Xiaohao Zhang ◽  
Haotian Yu ◽  
Yan Wang ◽  
Ying Chang ◽  
...  

Increasing studies have concentrated on investigating circular RNAs (circRNAs) as pivotal regulators in the progression of numerous diseases and biological processes and abundant evidence shows that circRNAs are participated in the regulation of innate immune responses. Several studies showed that Ricin Toxin (RT) could induce inflammatory injury. There was no research on the particular functions and underlying mechanisms of circRNAs in RT-induced inflammation. In this study, RNA sequencing performed on RT-treated and normal RAW264.7 macrophage cells was used to investigated the differentially expressed circRNAs. Based on the dataset, the expression of circEpc1 (mmu_circ_0,000,842) was identified higher in RT-treated cells. Moreover, gain-and-loss function assays showed that circEpc1 function as a promoter in RT-induced inflammation in vivo and in vitro. Mechanistically, circEpc1 acted as a miR-5114 sponge to relieve the suppressive effect of miR-5114 on its target NOD2 and thereby activating NF-κB and MAPK signaling pathways. Our results illuminated a link between RT-induced inflammation and the circEpc1 regulatory loop and provided novel insight into the functions of circRNA in innate immune, which may emerge as a potential target in immunotherapy to control the RT-induced inflammatory injury.


Sign in / Sign up

Export Citation Format

Share Document