scholarly journals Persistent Infection of Human Mesenchymal Stromal Cells With Bartonella Henselae Exerts a Proangiogenic Effect

Author(s):  
Sara Scutera ◽  
Stefania Mitola ◽  
Rosaria Sparti ◽  
Giorgia Piersigilli ◽  
Elisabetta Grillo ◽  
...  

Abstract Background B henselae is in humans the aetiologic agent of cat-scratch disease and of the vasculoproliferative disorders bacillary angiomatosis and bacillary peliosis. Although endothelial cells are crucial in the pathogenesis other cell types function as reservoir and contribute to pathological angiogenesis. Among them, mesenchymal stromal cells (MSCs) can sense pathogens and mount an appropriate cytokine/chemokine response through different Pattern Recognition Receptors (PRRs). MSCs exert direct antimicrobial effector function but may also shelter bacteria such as M. tuberculosis. Methods Adipose-derived MSCs were infected with B. henselae and analyzed for bacterial persistence by gentamicin protection assay, immunohistochemistry and immunofluorescence. Involvement of PRRs in bacterial infection was evaluated through gene and protein expression analysis. The effect of infection on MSC proliferation, apoptosis and release of soluble factors was assessed. The role of infected-MSC conditioned medium in promoting Bartonella infection of endothelial cells and angiogenesis was demonstrated using respectively gentamicin protection assay and different pro-angiogenic assays including spheroid, wound healing and morphogenesis. Results B. henselae can readily infect MSCs and survive in perinuclear bound vacuoles for up to 8 days. Bartonella infection stimulates MSC proliferation and upregulation of EGFR and of the two pattern recognition receptors (PRRs) TLR2 and NOD1. Specific inhibition of EGFR reduces bacterial internalization and treatment with anti-TLR2 neutralizing antibody or EGFR/NOD1 inhibitors significantly downmodulates CXCL8 production. Secretome analysis shows that, in addition to CXCL8, infected MSCs secrete higher levels of the proangiogenic factors VEGF, FGF-7, MMP-9, PIGF, serpin E1, TSP-1, uPA, IL-6, CCL5 and PDGF-D. Importantly, supernatants from B. henselae-infected MSCs increase the susceptibility of ECs to B. henselae infection while enhancing EC proangiogenic potential. Conclusions Altogether, these findings indicate that MSCs constitute a novel niche for B. henselae, which favors the persistence of vascular proliferative disorders.

2021 ◽  
Author(s):  
Scutera Sara ◽  
Mitola Stefania ◽  
Sparti Rosaria ◽  
Salvi Valentina ◽  
Grillo Elisabetta ◽  
...  

Some bacterial pathogens can manipulate the angiogenic response, suppressing or inducing it for their own ends. In humans, B. henselae is associated with cat-scratch disease and vasculoproliferative disorders such as bacillary angiomatosis and bacillary peliosis. Although endothelial cells (ECs) support the pathogenesis of Bartonella , the mechanisms by which Bartonella induces EC activation are not completely clear, as well as the possible contribution of other cells recruited at the site of infection. Mesenchymal stromal cells (MSCs) are endowed with angiogenic potential and play a dual role in infections exerting antimicrobial properties but also acting as a shelter for pathogens. Here we delved into the role of MSCs as reservoir of Bartonella and modulator of EC functions. B. henselae readily infected MSCs and survived in perinuclear bound vacuoles for up to 8 days. Infection enhanced MSC proliferation and the expression of EGFR, TLR2 and NOD1, proteins that are involved in bacterial internalization and cytokine production. Secretome analysis revealed that infected MSCs secreted higher levels of the proangiogenic factors VEGF, FGF-7, MMP-9, PIGF, serpin E1, TSP-1, uPA, IL-6, PDGF-D, CCL5 and CXCL8. Supernatants from B. henselae -infected MSCs increased the susceptibility of ECs to B. henselae infection and enhanced EC proliferation, invasion and reorganization in tube-like structures. Altogether, these results candidate MSCs as a still underestimated niche for B. henselae persistent infection and reveal a MSC-EC crosstalk that may contribute to exacerbate bacterial-induced angiogenesis and granuloma formation.


2021 ◽  
Vol 22 (3) ◽  
pp. 1027
Author(s):  
Christian Behm ◽  
Michael Nemec ◽  
Alice Blufstein ◽  
Maria Schubert ◽  
Xiaohui Rausch-Fan ◽  
...  

The periodontal ligament (PDL) responds to applied orthodontic forces by extracellular matrix (ECM) remodeling, in which human periodontal ligament-derived mesenchymal stromal cells (hPDL-MSCs) are largely involved by producing matrix metalloproteinases (MMPs) and their local inhibitors (TIMPs). Apart from orthodontic forces, the synthesis of MMPs and TIMPs is influenced by the aseptic inflammation occurring during orthodontic treatment. Interleukin (IL)-1β is one of the most abundant inflammatory mediators in this process and crucially affects the expression of MMPs and TIMPs in the presence of cyclic low-magnitude orthodontic tensile forces. In this study we aimed to investigate, for the first time, how IL-1β induced expression of MMPs, TIMPs and how IL-1β in hPDL-MSCs was changed after applying in vitro low-magnitude orthodontic tensile strains in a static application mode. Hence, primary hPDL-MSCs were stimulated with IL-1β in combination with static tensile strains (STS) with 6% elongation. After 6- and 24 h, MMP-1, MMP-2, TIMP-1 and IL-1β expression levels were measured. STS alone had no influence on the basal expression of investigated target genes, whereas IL-1β caused increased expression of these genes. In combination, they increased the gene and protein expression of MMP-1 and the gene expression of MMP-2 after 24 h. After 6 h, STS reduced IL-1β-induced MMP-1 synthesis and MMP-2 gene expression. IL-1β-induced TIMP-1 gene expression was decreased by STS after 6- and 24-h. At both time points, the IL-1β-induced gene expression of IL-1β was increased. Additionally, this study showed that fetal bovine serum (FBS) caused an overall suppression of IL-1β-induced expression of MMP-1, MMP-2 and TIMP-1. Further, it caused lower or opposite effects of STS on IL-1β-induced expression. These observations suggest that low-magnitude orthodontic tensile strains may favor a more inflammatory and destructive response of hPDL-MSCs when using a static application form and that this response is highly influenced by the presence of FBS in vitro.


Stroke ◽  
2018 ◽  
Vol 49 (Suppl_1) ◽  
Author(s):  
Kaavya Giridhar ◽  
Nikunj Satani ◽  
Bing Yang ◽  
Songmi Lee ◽  
Xiaopei Xi ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Neety Sahu ◽  
Gaurav Budhiraja ◽  
Anuradha Subramanian

Abstract Background Continuous low-intensity ultrasound (cLIUS) facilitates the chondrogenic differentiation of human mesenchymal stromal cells (MSCs) in the absence of exogenously added transforming growth factor-beta (TGFβ) by upregulating the expression of transcription factor SOX9, a master regulator of chondrogenesis. The present study evaluated the molecular events associated with the signaling pathways impacting SOX9 gene and protein expression under cLIUS. Methods Human bone marrow-derived MSCs were exposed to cLIUS stimulation at 14 kPa (5 MHz, 2.5 Vpp) for 5 min. The gene and protein expression of SOX9 was evaluated. The specificity of SOX9 upregulation under cLIUS was determined by treating the MSCs with small molecule inhibitors of select signaling molecules, followed by cLIUS treatment. Signaling events regulating SOX9 expression under cLIUS were analyzed by gene expression, immunofluorescence staining, and western blotting. Results cLIUS upregulated the gene expression of SOX9 and enhanced the nuclear localization of SOX9 protein when compared to non-cLIUS-stimulated control. cLIUS was noted to enhance the phosphorylation of the signaling molecule ERK1/2. Inhibition of MEK/ERK1/2 by PD98059 resulted in the effective abrogation of cLIUS-induced SOX9 expression, indicating that cLIUS-induced SOX9 upregulation was dependent on the phosphorylation of ERK1/2. Inhibition of integrin and TRPV4, the upstream cell-surface effectors of ERK1/2, did not inhibit the phosphorylation of ERK1/2 and therefore did not abrogate cLIUS-induced SOX9 expression, thereby suggesting the involvement of other mechanoreceptors. Consequently, the effect of cLIUS on the actin cytoskeleton, a mechanosensitive receptor regulating SOX9, was evaluated. Diffused and disrupted actin fibers observed in MSCs under cLIUS closely resembled actin disruption by treatment with cytoskeletal drug Y27632, which is known to increase the gene expression of SOX9. The upregulation of SOX9 under cLIUS was, therefore, related to cLIUS-induced actin reorganization. SOX9 upregulation induced by actin reorganization was also found to be dependent on the phosphorylation of ERK1/2. Conclusions Collectively, preconditioning of MSCs by cLIUS resulted in the nuclear localization of SOX9, phosphorylation of ERK1/2 and disruption of actin filaments, and the expression of SOX9 was dependent on the phosphorylation of ERK1/2 under cLIUS.


Blood ◽  
2016 ◽  
Vol 128 (8) ◽  
pp. 1063-1075 ◽  
Author(s):  
Douaa Dhahri ◽  
Kaori Sato-Kusubata ◽  
Makiko Ohki-Koizumi ◽  
Chiemi Nishida ◽  
Yoshihiko Tashiro ◽  
...  

Key Points tPA expands mesenchymal stromal cells (MSCs) in the bone marrow by a cytokine (KitL and PDGF-BB) crosstalk with endothelial cells. Pharmacologic inhibition of receptor tyrosine kinases (c-Kit and PDGFRα) impairs tPA-mediated MSC proliferation.


2020 ◽  
Author(s):  
Jesus Maria Sierra-Parraga ◽  
Ana Merino ◽  
Marco Eijken ◽  
Henri Leuvenink ◽  
Rutger J. Ploeg ◽  
...  

Abstract Background The renal endothelium is a prime target for ischemia reperfusion injury (IRI) during donation and transplantation procedures. Mesenchymal stromal cells (MSC) have been shown to ameliorate kidney function after IRI. However, whether this involves repair of the endothelium is not clear. Therefore, our objective is to study potential regenerative effects of MSC on injured endothelial cells and to identify the molecular mechanisms involved. Methods Human umbilical vein endothelial cells (HUVEC) were submitted to hypoxia and reoxygenation and TNF-a treatment. To determine whether physical interaction or soluble factors released by MSC were responsible for the potential regenerative effects of MSC on endothelial cells, dose-response experiments were performed in co-culture and transwell conditions and with secretome deficient MSC. Results MSC showed increased migration and adhesion to injured HUVEC, mediated by CD29 and CD44 on the MSC membrane. MSC decreased membrane injury marker expression, oxidative stress levels and monolayer permeability of injured HUVEC, which was observed only when allowing both physical and paracrine interaction between MSC and HUVEC. Furthermore, viable MSC in direct contact with injured HUVEC improved wound healing capacity by 45% and completely restored their angiogenic capacity. In addition, MSC exhibited an increased ability to migrate through an injured HUVEC monolayer compared to non-injured HUVEC in vitro. Conclusions These results show that MSC have regenerative effects on injured HUVEC via a mechanism which requires both physical and paracrine interaction. The identification of specific effector molecules involved in MSC-HUVEC interaction will allow targeted modification of MSC to apply and enhance the therapeutic effects of MSC in IRI.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ana Merino ◽  
Marta Sablik ◽  
Sander S. Korevaar ◽  
Carmen López-Iglesias ◽  
Maitane Ortiz-Virumbrales ◽  
...  

Proinflammatory stimuli lead to endothelial injury, which results in pathologies such as cardiovascular diseases, autoimmune diseases, and contributes to alloimmune responses after organ transplantation. Both mesenchymal stromal cells (MSC) and the extracellular vesicles (EV) released by them are widely studied as regenerative therapy for the endothelium. However, for therapeutic application, the manipulation of living MSC and large-scale production of EV are major challenges. Membrane particles (MP) generated from MSC may be an alternative to the use of whole MSC or EV. MP are nanovesicles artificially generated from the membranes of MSC and possess some of the therapeutic properties of MSC. In the present study we investigated whether MP conserve the beneficial MSC effects on endothelial cell repair processes under inflammatory conditions. MP were generated by hypotonic shock and extrusion of MSC membranes. The average size of MP was 120 nm, and they showed a spherical shape. The effects of two ratios of MP (50,000; 100,000 MP per target cell) on human umbilical vein endothelial cells (HUVEC) were tested in a model of inflammation induced by TNFα. Confocal microscopy and flow cytometry showed that within 24 hours >90% of HUVEC had taken up MP. Moreover, MP ended up in the lysosomes of the HUVEC. In a co-culture system of monocytes and TNFα activated HUVEC, MP did not affect monocyte adherence to HUVEC, but reduced the transmigration of monocytes across the endothelial layer from 138 ± 61 monocytes per microscopic field in TNFα activated HUVEC to 61 ± 45 monocytes. TNFα stimulation induced a 2-fold increase in the permeability of the HUVEC monolayer measured by the translocation of FITC-dextran to the lower compartment of a transwell system. At a dose of 1:100,000 MP significantly decreased endothelial permeability (1.5-fold) respect to TNFα Stimulated HUVEC. Finally, MP enhanced the angiogenic potential of HUVEC in an in vitro Matrigel assay by stimulating the formation of angiogenic structures, such as percentage of covered area, total tube length, total branching points, total loops. In conclusion, MP show regenerative effects on endothelial cells, opening a new avenue for treatment of vascular diseases where inflammatory processes damage the endothelium.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Hataiwan Kunkanjanawan ◽  
Tanut Kunkanjanawan ◽  
Veerapol Khemarangsan ◽  
Rungrueang Yodsheewan ◽  
Kasem Theerakittayakorn ◽  
...  

Coimplantation of endothelial cells (ECs) and mesenchymal stromal cells (MSCs) into the transplantation site could be a feasible option to achieve a sufficient level of graft-host vascularization. To find a suitable source of tissue that provides a large number of high-quality ECs and MSCs suited for future clinical application, we developed a simplified xeno-free strategy for isolation of human umbilical vein endothelial cells (HUVECs) and Wharton’s jelly-derived mesenchymal stromal cells (WJ-MSCs) from the same umbilical cord. We also assessed whether the coculture of HUVECs and WJ-MSCs derived from the same umbilical cord (autogenic cell source) or from different umbilical cords (allogenic cell sources) had an impact on in vitro angiogenic capacity. We found that HUVECs grown in 5 ng/ml epidermal growth factor (EGF) supplemented xeno-free condition showed higher proliferation potential compared to other conditions. HUVECs and WJ-MSCs obtained from this technic show an endothelial lineage (CD31 and von Willebrand factor) and MSC (CD73, CD90, and CD105) immunophenotype characteristic with high purity, respectively. It was also found that only the coculture of HUVEC/WJ-MSC, but not HUVEC or WJ-MSC mono-culture, provides a positive effect on vessel-like structure (VLS) formation, in vitro. Further investigations are needed to clarify the pros and cons of using autogenic or allogenic source of EC/MSC in tissue engineering applications. To the best of our knowledge, this study offers a simple, but reliable, xeno-free strategy to establish ECs and MSCs from the same umbilical cord, a new opportunity to facilitate the development of personal cell-based therapy.


Sign in / Sign up

Export Citation Format

Share Document