scholarly journals Evaluation of Mechanical and Wear Properties of Ceramic and Inorganic compounds based Composite via PM route and Optimization through Robust design technique

Author(s):  
SURESHKUMAR P ◽  
suresh kumar ◽  
T. Jagadeesha ◽  
L. Natrayan ◽  
M. Ravichandran ◽  
...  

Abstract The present research study investigates the Mechanical, Physical, and Tribological properties of powder metallurgy (PM) produced AA6063 alloy reinforced with silicon nitride (Si3N4) and copper nitrate (CuN2O6). Incorporation of Si3N4 & CuN2O6 reinforcement in matrix material ranged from 6 to 12 % Si3N4 in a 6-step interval and 2 to 6 %CuN2O6 in a two-step interval. The characterizations were made on the PM-produced specimens using OM, EDS, XRD, and Hardness. The reinforcement particles were uniformly distributed, which was attributed to a homogeneous mixer of matrix and reinforcements. The test findings show that as the reinforcing percentage of the ceramic and inorganic compound increases, properties such as hardness and density rise considerably and monolithically. The existence of phases such as Si3N4 and CuN2O6 reinforcement in the AA6063 matrix was ensured by X-ray diffraction. The hardness of AA6063/12%Si3N4/6%CuN2O6 increased by 88% over the base alloy due to a mismatch in thermal expansion between the Al matrix and reinforcement, which causes massive internal stress, causing the aluminium matrix to plastically deform to accommodate the reduced volume expansion of Si3N4 and CuN2O6 particles. The dry sliding wear test was determined using the Pin-on-Disc method, and the results show that the composite is more wear-resistant. An orthogonal array and analysis of variance were utilized to evaluate the solution, including parameters using the Taguchi robust design technique. The weight percentage of the Si3N4/CuN2O6 compound and the relationship between weight % of reinforcement and applied load had the most significant impact on composite wear resistance. The produced composite's wear morphology was studied using images from a scanning electron microscope and energy dispersive spectroscopy.

2021 ◽  
Vol 118 (6) ◽  
pp. 614
Author(s):  
Chellamuthu Ramesh Kumar ◽  
Subramanian Baskar ◽  
Ganesan Ramesh ◽  
Pathinettampadian Gurusamy ◽  
Thirupathy Maridurai

In this research, investigations were carried out on Al6061 base alloy with the changing weight percentage of silicon carbide (SiC) and boron carbide (B4C) with keeping the amount of talc constant. The main objective of this present study was to improve the wear resistance of aluminum alloy using SiC/B4C/talc ceramic particles using stir-casting technique and how the eco-friendly talc content influencing the solid lubricity during the abrasion process. The experiments were conducted via orthogonal array of L27 using Taguchi’s method. The optimum value along with the coefficient of friction was obtained on the basis of grey relational equations and ANOVA, which helped in analysis of most influential input parameters such as applied load, sliding speed, sliding distance and percentage of reinforcement. Conformation tests were performed for the purpose of validation of the experimental results. The specimens were analyzed using scanning electron microscope (SEM) with EDX for micro structural studies. The SiC, B4C and talc presence in the composite helped to improve the mechanical properties, according to the results. The presence of solid lubricant talc as reinforcement to the aluminum hybrid composite reduced the wear properties and decreased the co-efficient friction. These wear resistance improved aluminum metal matrix composites could be used in automobile, defense and domestic applications where high strength and wear resistance required with lesser specific weight.


2019 ◽  
Vol 285 ◽  
pp. 63-68 ◽  
Author(s):  
Mnel A. Abdelgnei ◽  
M. Zaidi Omar ◽  
Mariyam Jameelah Ghazali

Earlier work has shown that Al-5.7Si-2Cu-0.3Mg aluminium alloy is suitable for thixoforming process. Here, the dry sliding wear behaviour of the alloy, in the as-cast and thixoformed conditions were investigated. The cooling slope technique was used to produce the alloy with globular microstructure for the thixoforming process. Both the thixoformed and cast samples were subjected to T6 heat treatments prior to the wear tests. The tests were carried out using a pin-on-disc tribometer, against a hardened M2 tool steel disc of 62 HRC at different loads, under dry sliding conditions at fixed sliding speed and sliding distance of 1 m.s–1 and 5 km respectively. The microstructural response, worn surfaces were thoroughly and carefully examined using various methods such as scanning electron microscopy, energy dispersive spectroscopy, and differential scanning calorimetry. The density of the heat treated thixoformed alloys showed significant increase in the hardness property, among others, due to its reduced porosity. Their wear test results also observed that the weight loss of materials increase with an increase in the input load and the sliding distance for all samples. However, the as-cast alloy displayed higher wear rate compared with the thixoformed alloys. In general, the wear mechanisms showed a mixture of abrasive, oxidative and delamination wear (mild wear) at low applied loads and mainly an adhesive (severe wear) at high applied loads.


2011 ◽  
Vol 415-417 ◽  
pp. 170-173
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Yi Chao Ding ◽  
Yi San Wang

A wear resistant TiC-Cr7C3/Fe surface composite was produced by cast technique and in-situ synthesis technique. The microstructure and dry-sliding wear behavior of the surface composite was investigated using scanning electron microscope(SEM), X-ray diffraction(XRD) and MM-200 wear test machine. The results show that the surface composite consists of TiC and Cr7C3as the reinforcing phase, α-Fe and γ-Fe as the matrix. The surface composite has excellent wear-resistance under dry-sliding wear test condition with heavy loads.


2016 ◽  
Vol 40 (3) ◽  
pp. 351-369 ◽  
Author(s):  
G. Karthikeyan ◽  
G.R. Jinu

LM6 was reinforced with various percentages of ZrO2 particles by using stir casting method. The prepared samples were subjected to tensile and wear test at variable loads by using a pin-on-disc wear tester. The curve fitting technique was used to develop the respective linear, logarithmic, polynomial, power law equations. The wear worn surface and surface roughness of the specimen were studied. Response Surface Methodology (RSM) was used to minimize the number of experimental conditions and develop the mathematical model between the key process parameters namely weight percentage of ZrO2, load and sliding distance. Analysis of Variance technique was applied to check the validity of the developed model. The mathematical model developed for the specific wear rate was predicted at 99% confidence level and some useful conclusions were made.


2019 ◽  
Vol 9 (5) ◽  
pp. 567-572
Author(s):  
Li Hui ◽  
Jiao Lei ◽  
Miao Chang ◽  
Zhong Wu ◽  
Zhang Xiong ◽  
...  

The AZ91D composites reinforced by 10 wt.% AlN particles were welded via plasma welding and the dry sliding wear properties of the composites were investigated. The influence of welding current, welding speed and plasma flow rate were studied in detail. By using of OM, XRD, EDS and SEM, the crystalline phase, the microstructure and the wear properties were investigated. The experiment result shows that the AlN reinforcing particles is in the shape of strip and have a fine size under the condition of the welding speed 400 mm/min, the welding current 180 A and the plasma flow 2.0 L/min, which reaches 20–30 μm. The matrix grain in the composite were obviously refined, which reaches 60–70 μm. Wear test results showed that the wear rate of welding seam compared base metal decreased by 25%.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Ozgen Akalin ◽  
K. Vefa Ezirmik ◽  
Mustafa Urgen ◽  
Golam M. Newaz

Wear characteristics of Al6061 composites, reinforced with short NiTi fibers, were investigated. The NiTi/Al6061 composite samples were fabricated using pressure-assisted sintering process in ambient air where the NiTi fibers are aligned unidirectional in the Al matrix. In addition, NiTi/Al6061 composite with 5 wt % SiC particulates and monolithic Al6061 and Al6061 with 5 wt % SiC particulates were processed in similar conditions. The wear tests were performed using a reciprocating tribometer in ball-on-flat configuration where the counterbody material was martensitic steel. The effects of fiber isotropy and SiC reinforcements on wear resistance were experimentally investigated in dry sliding. Wear properties of the samples were studied using an optical profiler and a scanning electron microscope analysis. The results showed that transverse NiTi fibers improve the wear resistance significantly. Samples with transverse fiber orientation show mostly abrasive wear, whereas, monolithic and parallel samples show adhesive wear mechanism. In addition, SiC reinforcements improve the wear resistance of the composite and the monolithic samples. Since the Al6061 matrix material is smeared onto NiTi fibers in a short period, all composite samples show similar frictional characteristics after certain period of running in dry sliding.


An investigational analysis was conducted to study the effect of basalt/curaua hybrid composite focusing on wear properties. The hybrid composites are fabricated by resin transfer molding and the tests are conducted by pin on disk as per ASTM G99. Basalt/Curaua relative fiber weight percentage as 0/100,40/60, 60/40, 100/0 are fabricated and analyzed for abrasion wear resistance. Specimens are tested for the load of 50N at 1 m/s using Pin on Disc wear testing machine by varying abrading distance. Worn out surfaces of the abraded composites are studied by using scanning electron microscopy (SEM) and Fourier- transform infrared spectroscopy (FTIR). Roughness of the worn and pure surfaces is also accounted to measure significance of hybridization on tribological properties of the hybrid composites. Result shows that coefficient of friction is increasing in higher the curaua fiber in hybrid composites. Morphology evident the wear mechanism and internal compatibility of hybrid fibers.


2013 ◽  
Vol 721 ◽  
pp. 303-307
Author(s):  
Hong Xu ◽  
Yi Chao Ding ◽  
Jing Wang

(Ti,V)C particles reinforced Fe-based surface composite coatings were fabricated by in-situ synthesis and powder metallurgy route. The microstructure and wear properties were investigated by scanning electron microscopy and dry sliding wear test. The results show that fine (Ti,V)C particulates distribute uniformly in pearlite matrix; when V/Ti atomic ratio is 0.4, the wear weight loss of the composites achieve minimum.


2021 ◽  
Vol 21 (3) ◽  
pp. 221-229
Author(s):  
Merivt Mahdi Hanoos

This work focuses on studying the effect of adding nanoparticles on the mechanical properties of the alloy (Al-4%Si) reinforced with carbon nanotube at a different weight percentage (0.25,0.5 and 1%wt). prepared the base alloy and the reinforced materials in a casting followed by solution heat treatment in the furnace at temperature 520ºC for 2 hr. , then artificially aged immediately at the temperature of 185 Co for (2-8 hr.). A detailed characterization of the composite metal matrix structure has performed using XRD, microhardness and wear rate measurements. The results demonstrated that the values of the hardness test increase with an increasing weight percentage of CNTs, this enhancement wear properties of the base alloy reinforced for all percentage of carbon nanotubes additive especially at the weight percentage of 0.5%.


2010 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Muna K. Abbass

 The aim of the present research is to study the effect of cadmium addition on microstructure and wear behavior of the alloy (Al-12%Si) under dry sliding conditions. Wear behavior was studied by using the Pin-On- Disc technique under different conditions at applied loads 5-20 N, at constant sliding speed and in constant time. The steel disc hardness was 35HRc. All alloys were prepared with different percentages of cadmium (1.0, 2.0, 3.0) wt%. Also the base alloy was prepared by melting and pouring the molten metal in a metallic mold. It was found that the cadmium addition to Al-Si matrix decreases the wear rate and improves the wear properties for alloys containing -Cd under loads above 10N. It was also found that the alloy Al-12%Si containing 3%Cd is the best alloy in wear resistance and friction coefficient. This is due to presence of the Cd-phase as cuboids or hard particles distributed in a eutectic matrix which reduces the friction coefficient at high loads (20N). 


Sign in / Sign up

Export Citation Format

Share Document