scholarly journals Construction of a High-density Genetic Map and Identification of Candidate Genes for Resistance to Fusarium Wilt based on the Resequencing of Recombinant Inbred Line Population in Gossypium Barbadense

Author(s):  
Wanli Han ◽  
Jieyin Zhao ◽  
Xiaojuan Deng ◽  
Aixing Gu ◽  
Duolu Li ◽  
...  

Abstract Background: Resistance to Fusarium wilt (FW) is of great significance for increasing the yield of Gossypium barbadense. Most published genetic studies on G. barbadense focus on yield and fiber quality traits, while there are few reports on resistance to FW. Results: To understand the genetic basis of cotton resistance to FW, this study used 110 recombinant inbred lines (RILs) of G. barbadense obtained from the parental materials Xinhai 14 and 06-146, and Nannong was used to construct a high-density genetic linkage map. The high-density genetic map was based on the resequencing of 933,845 single-nucleotide polymorphism (SNP) markers, and 3627 bins covering 2483.17 cM were finally obtained. The collinearity matched the physical map. A total of 9 QTLs for FW resistance were identified, each QTL explained 4.27-14.92% of the observed phenotypic variation, and qFW-Dt3-1 was identified in at least two environments. According to gene annotation information from multiple databases, promoter homeopathic elements and transcriptome data, 10 candidate genes were screened in a stable QTL interval. qRT-PCR analysis showed that the GOBAR_DD06292 gene was differentially expressed in the roots of the two parents under FW stress and exhibited the same expression trend in the G. barbadense resource materials.Conclusions: These results indicate the importance of the GOBAR_DD06292 gene in FW resistance in G. barbadense and lay a molecular foundation for the analysis of the molecular mechanism of FW in G. barbadense.

2020 ◽  
Vol 21 (3) ◽  
pp. 797 ◽  
Author(s):  
Jianfu Jiang ◽  
Xiucai Fan ◽  
Ying Zhang ◽  
Xiaoping Tang ◽  
Xiaomei Li ◽  
...  

Berry firmness is one of the most important quality traits in table grapes. The underlying molecular and genetic mechanisms for berry firmness remain unclear. We constructed a high-density genetic map based on whole-genome resequencing to identify loci associated with berry firmness. The genetic map had 19 linkage groups, including 1662 bin markers (26,039 SNPs), covering 1463.38 cM, and the average inter-marker distance was 0.88 cM. An analysis of berry firmness in the F1 population and both parents for three consecutive years revealed continuous variability in F1, with a distribution close to the normal distribution. Based on the genetic map and phenotypic data, three potentially significant quantitative trait loci (QTLs) related to berry firmness were identified by composite interval mapping. The contribution rate of each QTL ranged from 21.5% to 28.6%. We identified four candidate genes associated with grape firmness, which are related to endoglucanase, abscisic acid (ABA), and transcription factors. A qRT-PCR analysis revealed that the expression of abscisic-aldehyde oxidase-like gene (VIT_18s0041g02410) and endoglucanase 3 gene (VIT_18s0089g00210) in Muscat Hamburg was higher than in Crimson Seedless at the veraison stage, which was consistent with that of parent berry firmness. These results confirmed that VIT_18s0041g02410 and VIT_18s0089g00210 are candidate genes associated with berry firmness.


2019 ◽  
Vol 20 (14) ◽  
pp. 3410 ◽  
Author(s):  
Manyu Yang ◽  
Guangrong Li ◽  
Hongshen Wan ◽  
Liping Li ◽  
Jun Li ◽  
...  

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating fungal diseases of wheat worldwide. It is essential to discover more sources of stripe rust resistance genes for wheat breeding programs. Specific locus amplified fragment sequencing (SLAF-seq) is a powerful tool for the construction of high-density genetic maps. In this study, a set of 200 recombinant inbred lines (RILs) derived from a cross between wheat cultivars Chuanmai 42 (CH42) and Chuanmai 55 (CH55) was used to construct a high-density genetic map and to identify quantitative trait loci (QTLs) for stripe rust resistance using SLAF-seq technology. A genetic map of 2828.51 cM, including 21 linkage groups, contained 6732 single nucleotide polymorphism markers (SNP). Resistance QTLs were identified on chromosomes 1B, 2A, and 7B; Qyr.saas-7B was derived from CH42, whereas Qyr.saas-1B and Qyr.saas-2A were from CH55. The physical location of Qyr.saas-1B, which explained 6.24–34.22% of the phenotypic variation, overlapped with the resistance gene Yr29. Qyr.saas-7B accounted for up to 20.64% of the phenotypic variation. Qyr.saas-2A, a minor QTL, was found to be a likely new stripe rust resistance locus. A significant additive effect was observed when all three QTLs were combined. The combined resistance genes could be of value in breeding wheat for stripe rust resistance.


2014 ◽  
Vol 50 (No. 2) ◽  
pp. 171-176 ◽  
Author(s):  
B.S. Patil ◽  
R.L. Ravikumar ◽  
J.S. Bhat ◽  
C.D. Soregaon

A molecular map of chickpea was constructed using F<sub>9</sub>:F<sub>10</sub> recombinant inbred lines from an intraspecific cross between Fusarium wilt susceptible (JG 62) and resistant (WR 315) genotypes. A total of 23 markers with LOD scores of &gt; 3.0 were mapped on the recombinant inbred lines (RILs). Twenty sequence tagged microsatellites (STMSs) and three amplified fragment length polymorphisms (AFLPs) covered 300.2 cM in five linkage groups at an average inter-marker distance of 13 cM. Early and late wilting due to Fusarium infection was recorded in RILs at 30&nbsp;and 60 DAS, respectively. There was a significant variation among RILs for wilt resistance for both early and late wilting. QTLs associated with early (30 days after sowing (DAS)) and late (60&nbsp;DAS) wilting are located on LG II. The flanking markers for these QTLs were the same as those of previous reports. Five STMS markers located on LG II of reference map (interspecific) were mapped on LG II of the present map (intraspecific) with minor changes in the order of markers indicating the conservation of these genomic regions across the Cicer species.


2019 ◽  
Vol 444 (1-2) ◽  
pp. 119-137 ◽  
Author(s):  
Zhandong Cai ◽  
Yanbo Cheng ◽  
Peiqi Xian ◽  
Rongbin Lin ◽  
Qiuju Xia ◽  
...  

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Guosong Zhang ◽  
Jie Li ◽  
Jiajia Zhang ◽  
Xia Liang ◽  
Tao Wang ◽  
...  

Abstract Background A high-density genetic linkage map is essential for QTL fine mapping, comparative genome analysis, identification of candidate genes and marker-assisted selection in aquaculture species. Pelteobagrus vachelli is a very popular commercial species in Asia. However, some specific characters hindered achievement of the traditional selective breeding based on phenotypes, such as lack of large-scale genomic resource and short of markers tightly associated with growth, sex determination and hypoxia tolerance related traits. Results By making use of 5059 ddRAD markers in P. vachelli, a high-resolution genetic linkage map was successfully constructed. The map’ length was 4047.01 cM by using an interval of 0.11 cm, which is an average marker standard. Comparative genome mapping revealed that a high proportion (83.2%) of markers with a one-to-one correspondence were observed between P. vachelli and P. fulvidraco. Based on the genetic map, 8 significant genome-wide QTLs for 4 weight, 1 body proportion, 2 sex determination, and 1 hypoxia tolerance related traits were detected on 4 LGs. Some SNPs from these significant genome-wide QTLs were observably associated with these phenotypic traits in other individuals by Kompetitive Allele Specific PCR. In addition, two candidate genes for weight, Sipa1 and HSD11B2, were differentially expressed between fast-, medium- and slow-growing P. vachelli. Sema7a, associated with hypoxia tolerance, was induced after hypoxia exposure and reoxygenation. Conclusions We mapped a set of suggestive and significant QTLs as well as candidate genes for 12 growth, 1 sex determination and 1 hypoxia tolerance related traits based on a high-density genetic linkage map by making use of SNP markers for P. fulvidraco. Our results have offered a valuable method about the much more efficient production of all-male, fast growth and hypoxia tolerance P. vachelli for the aquaculture industry.


Euphytica ◽  
2021 ◽  
Vol 217 (9) ◽  
Author(s):  
Asena Akkose Baytar ◽  
Ceng Peynircioğlu ◽  
Volkan Sezener ◽  
Anne Frary ◽  
Sami Doğanlar

2020 ◽  
Vol 11 ◽  
Author(s):  
Qiao Li ◽  
Zhifen Pan ◽  
Yuan Gao ◽  
Tao Li ◽  
Junjun Liang ◽  
...  

Numerous quantitative trait loci (QTLs) have been identified for wheat quality; however, most are confined to low-density genetic maps. In this study, based on specific-locus amplified fragment sequencing (SLAF-seq), a high-density genetic map was constructed with 193 recombinant inbred lines derived from Chuanmai 42 and Chuanmai 39. In total, 30 QTLs with phenotypic variance explained (PVE) up to 47.99% were identified for falling number (FN), grain protein content (GPC), grain hardness (GH), and starch pasting properties across three environments. Five NAM genes closely adjacent to QGPC.cib-4A probably have effects on GPC. QGH.cib-5D was the only one detected for GH with high PVE of 33.31–47.99% across the three environments and was assumed to be related to the nearest pina-D1 and pinb-D1genes. Three QTLs were identified for FN in at least two environments, of which QFN.cib-3D had relatively higher PVE of 16.58–25.74%. The positive effect of QFN.cib-3D for high FN was verified in a double-haploid population derived from Chuanmai 42 × Kechengmai 4. The combination of these QTLs has a considerable effect on increasing FN. The transcript levels of Basic 7S globulin and Basic 7S globulin 2 in QFN.cib-3D were significantly different between low FN and high FN bulks, as observed through bulk segregant RNA-seq (BSR). These QTLs and candidate genes based on the high-density genetic map would be beneficial for further understanding of the genetic mechanism of quality traits and molecular breeding of wheat.


2021 ◽  
Vol 12 ◽  
Author(s):  
Guoyuan Liu ◽  
Qingshan Yang ◽  
Junfeng Gao ◽  
Yuwei Wu ◽  
Zhicong Feng ◽  
...  

The study on the fast-growing traits of trees, mainly valued by tree height (TH) and diameter at breast height (DBH), is of great significance to promote the development of the forest industry. Quantitative trait locus (QTL) mapping based on high-density genetic maps is an efficient approach to identify genetic regions for fast-growing traits. In our study, a high-density genetic map for the F1 population was constructed. The genetic map had a total size of 5,484.07 centimorgan (cM), containing 5,956 single nucleotide polymorphisms (SNPs) based on Specific Length Amplified Fragment sequencing. Six fast-growing related stable QTL were identified on six chromosomes, and five stable QTL were identified by a principal component analysis (PCA). By combining the RNA-seq analysis for the two parents and two progenies with the qRT-PCR analysis, four candidate genes, annotated as DnaJ, 1-aminocyclopropane-1-carboxylate oxidase 1 (ACO1), Caffeic acid 3-O-methyltransferase 1 (COMT1), and Dirigent protein 6 (DIR6), that may regulate height growth were identified. Several lignin biosynthesis-related genes that may take part in height growth were detected. In addition, 21 hotspots in this population were found. The results of this study will provide an important foundation for further studies on the molecular and genetic regulation of TH and DBH.


Sign in / Sign up

Export Citation Format

Share Document