scholarly journals Chirality Affecting Reaction Dynamics of HgS Nanostructures Simultaneously Visualized in Real and Reciprocal Space

Author(s):  
Zetan Cao ◽  
Jia He ◽  
Zhiwen Liu ◽  
Haoran Zhang ◽  
Bin Chen

Abstract Chirality involved reactions enable to probe features in the fields of asymmetric synthesis and catalysis, which allow to gain insight into the fundamental mechanisms of topochemically controlled reactions. However, in situ observation of the chirality-associated reaction dynamics with simultaneous structural determination of new features has been lacking. Here, we report the direct visualization of the electron-beam-stimulated reaction dynamics of HgS nanostructures with chiral and achiral morphologies simultaneously in both real and reciprocal space. Under the electron-beam excitation of HgS nanostructures, the formation and evaporation dynamics of Hg nanodroplets were vividly pictured while the reciprocal space imaging revealed the structural transformation from monocrystalline to polycrystalline. Such induced changes were size-dependent, which were slowed down when involving the chirality in the nanostructures. The finding offers a fundamental understanding of topochemically controlled reaction mechanisms and holds promise of tuning asymmetric synthesis for catalysis related applications.

Author(s):  
J. C. Ingram ◽  
P. R. Strutt ◽  
Wen-Shian Tzeng

The invisibility criterion which is the standard technique for determining the nature of dislocations seen in the electron microscope can at times lead to erroneous results or at best cause confusion in many cases since the dislocation can still show a residual image if the term is non-zero, or if the edge and screw displacements are anisotropically coupled, or if the dislocation has a mixed character. The symmetry criterion discussed below can be used in conjunction with and in some cases supersede the invisibility criterion for obtaining a valid determination of the nature of the dislocation.The symmetry criterion is based upon the well-known fact that a dislocation, because of the symmetric nature of its displacement field, can show a symmetric image when the dislocation is correctly oriented with respect to the electron beam.


Author(s):  
Marc J.C. de Jong ◽  
Wim M. Busing ◽  
Max T. Otten

Biological materials damage rapidly in the electron beam, limiting the amount of information that can be obtained in the transmission electron microscope. The discovery that observation at cryo temperatures strongly reduces beam damage (in addition to making it unnecessaiy to use chemical fixatives, dehydration agents and stains, which introduce artefacts) has given an important step forward to preserving the ‘live’ situation and makes it possible to study the relation between function, chemical composition and morphology.Among the many cryo-applications, the most challenging is perhaps the determination of the atomic structure. Henderson and co-workers were able to determine the structure of the purple membrane by electron crystallography, providing an understanding of the membrane's working as a proton pump. As far as understood at present, the main stumbling block in achieving high resolution appears to be a random movement of atoms or molecules in the specimen within a fraction of a second after exposure to the electron beam, which destroys the highest-resolution detail sought.


Author(s):  
K. Chowdhury ◽  
S. Ghosh ◽  
M. Mukherjee

AbstractThe direct method program SAYTAN has been applied successfully to redetermine the structure of cytochrome c


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 163
Author(s):  
Iryna Zelenina ◽  
Igor Veremchuk ◽  
Yuri Grin ◽  
Paul Simon

Nano-scaled thermoelectric materials attract significant interest due to their improved physical properties as compared to bulk materials. Well-shaped nanoparticles such as nano-bars and nano-cubes were observed in the known thermoelectric material PbTe. Their extended two-dimensional nano-layer arrangements form directly in situ through electron-beam treatment in the transmission electron microscope. The experiments show the atomistic depletion mechanism of the initial crystal and the recrystallization of PbTe nanoparticles out of the microparticles due to the local atomic-scale transport via the gas phase beyond a threshold current density of the beam.


2009 ◽  
Vol 156-158 ◽  
pp. 487-492 ◽  
Author(s):  
M.V. Zamoryanskaya

In this paper the new method for determination of luminescent centers concentration are discussed. While the possibility of electron traps determination and definition of its activation energy are suggested. The cathodoluminescent (CL) method was used. The determination of luminescent centers concentration in silicon oxide is based on the measurements of dependences of CL intensity on electron beam current. The presence and energy of activation of electron traps were studied by measurement of rise time and decay of luminescent band during the stationary irradiation of silica by electron beam.


2012 ◽  
Vol 422 (1-3) ◽  
pp. 86-91 ◽  
Author(s):  
P.D. Edmondson ◽  
W.J. Weber ◽  
F. Namavar ◽  
Y. Zhang

Sign in / Sign up

Export Citation Format

Share Document