scholarly journals Impact of Maternal Chronodisruption on Female Offspring Puberty. A Role of Kisspeptin and Irisin

Author(s):  
Ana Alonso ◽  
Beatriz Medina ◽  
Celestino González ◽  
Elena Díaz

Abstract The neuroendocrine mechanisms regulating the onset of puberty are unclear. Kisspeptin is a potent gatekeeper of pubertal onset, but it has also been proposed that the time of puberty is dictated by kisspeptin independent mechanism. In this way, the myokine irisin could be involved in the puberty onset process serving as a metabolic trigger. Puberty is influenced by environmental factors like photoperiod. Maternal photoperiod influences postnatal development; thus alterations in maternal melatonin rhythm may affect the offspring’s reproductive axis development, especially at puberty. There is no research regarding the influence of maternal photoperiod on kisspeptin and irisin profile in offspring close to puberty. We investigated the influence of maternal photoperiod on serum kisspeptin and irisin levels during sexual development in female rat offspring.The study was carried out on female offspring Wistar rats at 25 and 30 days of age and in the vaginal opening day. Pregnant mother rats were included in three groups; control (12L/12 D), other exposed to continuous light during pregnancy (24L/0D), and the third exposed to continuous light as well as receiving daily melatonin during pregnancy. Serum kisspeptin and irisin were determined and vaginal opening day were registered. The results demonstrated that both continuous light exposure and melatonin treatment during intrauterine life affects kisspeptin and irisin secretion in the offspring during sexual maturation; these point out to an important role of the cytokine irisin in the onset of puberty.

2017 ◽  
Vol 114 (5) ◽  
pp. 1207-1212 ◽  
Author(s):  
Diana E. Peragine ◽  
Martha Pokarowski ◽  
Lucia Mendoza-Viveros ◽  
Ashlyn Swift-Gallant ◽  
Hai-Ying M. Cheng ◽  
...  

Neuroendocrine mechanisms underlying social inhibition of puberty are not well understood. Here, we use a model exhibiting the most profound case of pubertal suppression among mammals to explore a role for RFamide-related peptide-3 [RFRP-3; mammalian ortholog to gonadotropin-inhibitory hormone (GnIH)] in neuroendocrine control of reproductive development. Naked mole rats (NMRs) live in sizable colonies where breeding is monopolized by two to four dominant animals, and no other members exhibit signs of puberty throughout their lives unless they are removed from the colony. Because of its inhibitory action on the reproductive axis in other vertebrates, we investigated the role of RFRP-3 in social reproductive suppression in NMRs. We report that RFRP-3 immunofluorescence expression patterns and RFRP-3/GnRH cross-talk are largely conserved in the NMR brain, with the exception of the unique presence of RFRP-3 cell bodies in the arcuate nucleus (Arc). Immunofluorescence comparisons revealed that central expression of RFRP-3 is altered by reproductive status, with RFRP-3 immunoreactivity enhanced in the paraventricular nucleus, dorsomedial nucleus, and Arc of reproductively quiescent NMRs. We further observed that exogenous RFRP-3 suppresses gonadal steroidogenesis and mating behavior in NMRs given the opportunity to undergo puberty. Together, our findings establish a role for RFRP-3 in preserving reproductive immaturity, and challenge the view that stimulatory peptides are the ultimate gatekeepers of puberty.


Author(s):  
Maria Jesus Vazquez ◽  
Silvia Daza-Dueñas ◽  
Manuel Tena-Sempere

Abstract Reproduction is an essential function for perpetuation of the species. As such, it is controlled by sophisticated regulatory mechanisms, which allow a perfect match between environmental conditions and internal cues, to ensure adequate pubertal maturation and achievement of reproductive capacity. Besides classical genetic regulatory events, mounting evidence has documented that different epigenetic mechanisms operate at different levels of the reproductive axis to finely tune the development and function of this complex neuroendocrine system along the lifespan. In this mini-review, we will summarize recent evidence on the role of epigenetics in the control of reproduction, with special focus on the modulation of the central components of this axis. Particular attention will be paid to the epigenetic control of puberty and Kiss1 neurons, as major developments have taken place in this domain recently. In addition, the putative role of central epigenetic mechanisms in mediating the influence of nutritional and environmental cues on reproductive function will be also discussed.


2011 ◽  
Vol 107 (5) ◽  
pp. 665-673 ◽  
Author(s):  
K. Sathishkumar ◽  
Rebekah Elkins ◽  
Uma Yallampalli ◽  
Chandra Yallampalli

We previously reported that gestational dietary protein restriction in rats causes sex-related differences in development of blood pressure (BP) in the offspring, which is more pronounced in males than in females. As such effects may depend on sex hormones, we investigated the role of oestradiol in the development of hypertension in female offspring of protein-restricted dams. Female offspring of pregnant rats fed normal (20 %) or protein-restricted (6 %) casein diets throughout pregnancy were kept either intact, ovariectomised or ovariectomised with oestradiol supplementation. BP, Plasma oestradiol and testosterone levels, and vascular oestrogen receptor (ER) were examined. BP was significantly higher and plasma oestradiol levels were significantly lower ( − 34 %) in intact protein-restricted female offspring compared to corresponding controls. Further decrease in oestradiol levels by ovariectomy exacerbated hypertension in the protein-restricted females, with an earlier onset and more prominent elevation in BP compared to controls. Oestradiol supplementation in ovariectomised protein-restricted females significantly reversed ovariectomy-induced hypertension but did not normalise BP to control levels. The hypertensive protein-restricted females have reduced vascular ERα expression that was unaffected by ovariectomy or oestradiol replacement. In addition, testosterone levels were significantly higher by 2·4-, 3·4- and 2·8-fold in intact, ovariectomised and oestradiol-replaced protein-restricted females compared to corresponding controls. The present data show that: (1) hypertension in protein-restricted adult female offspring is associated with reduced plasma oestradiol levels; (2) oestradiol protects and limits the severity of hypertension in protein-restricted females and contributes to sexual dimorphism; (3) oestradiol replacement fails to completely reverse hypertension, which may be related to limited availability of vascular ERα receptors and/or increased circulating testosterone levels.


Author(s):  
Sajad Jeddi ◽  
Saeedeh Khalifi ◽  
Mahboubeh Ghanbari ◽  
Asghar Ghasemi

Background and objective: The effects of hypothyroidism during pregnancy and lactation on carbohydrate metabolism have been mostly studied in male animals. The aim of this study is therefore to investigate effect of fetal and neonatal hypothyroidism (FH and NH) on the glucose tolerance in middle-aged female rat offspring. Methods: Pregnant female rats were divided into three groups: Rats in the control group consumed tap water, while those in the FH and NH groups consumed 250 mg/L of 6-propyl-2-thiouracil (PTU) in their drinking water during gestation or lactation periods, respectively. After weaning, the female offspring were separated and divided into 3 groups (n=8/group): Control, FH, and NH. Body weight was recorded monthly and intravenous glucose tolerance test (IVGTT) was performed at month 12. Results: Compared to controls, female rats in the FH group had significantly higher plasma glucose levels than controls throughout the IVGTT except at min 60. Values at min 5 of the FH and control group were 196.1±1.9 and 155.3±5.9 mg/dL, respectively (P<0.05). In the NH group, plasma glucose levels were significantly higher only at min 5 (185.7±14.1 vs. 155.3±5.9 mg/dL, P<0.05). Conclusion: Hypothyroidism during fetal or neonatal periods caused glucose intolerance in middle-aged female offspring rats.


2021 ◽  
pp. 153537022110032
Author(s):  
Issa Alhamoud ◽  
Susan K Legan ◽  
Jyothsna Gattineni ◽  
Michel Baum

Prenatal dexamethasone has been shown to increase blood pressure in male offspring but the mechanism for the increase in blood pressure is unclear. The present study examined if prenatal programming by maternal injection of dexamethasone on days 15 and 16 of gestation affected the blood pressure comparably in female and male offspring. Our hypothesis was that males would be affected by prenatal dexamethasone to a greater extent than females and that either an increase in renal tubular transporter abundance or an increase in renin or aldosterone system would be associated with hypertension with prenatal programming. Prenatal dexamethasone increased blood pressure at two months and six months of age and resulted in proteinuria and albuminuria at six months in male but not female rat offspring. There was no effect of prenatal dexamethasone on blood pressure and proteinuria at one month in male and in female offspring. While prenatal dexamethasone increased male renal thick ascending limb sodium potassium two chloride cotransporter protein abundance at two months, prenatal dexamethasone on days 15 and 16 of gestation did not affect transporter abundance in males at other ages, nor did it affect proximal tubule sodium/hydrogen exchanger or distal convoluted tubule sodium chloride cotransporter protein abundance at any age. There was no difference in systemic renin or aldosterone in the prenatal dexamethasone group compared to same sex controls. In conclusion, male but not female offspring have an increase in blood pressure and urinary protein excretion with prenatal dexamethasone. The increase in blood pressure with prenatal programming was not associated with a consistent increase in renal tubular transporter protein abundance, nor plasma renin activity and serum aldosterone.


2021 ◽  
Vol 22 (14) ◽  
pp. 7287
Author(s):  
Masaki Tanaka ◽  
Shunji Yamada ◽  
Yoshihisa Watanabe

Neuropeptide Y (NPY), an abundant peptide in the central nervous system, is expressed in neurons of various regions throughout the brain. The physiological and behavioral effects of NPY are mainly mediated through Y1, Y2, and Y5 receptor subtypes, which are expressed in regions regulating food intake, fear and anxiety, learning and memory, depression, and posttraumatic stress. In particular, the nucleus accumbens (NAc) has one of the highest NPY concentrations in the brain. In this review, we summarize the role of NPY in the NAc. NPY is expressed principally in medium-sized aspiny neurons, and numerous NPY immunoreactive fibers are observed in the NAc. Alterations in NPY expression under certain conditions through intra-NAc injections of NPY or receptor agonists/antagonists revealed NPY to be involved in the characteristic functions of the NAc, such as alcohol intake and drug addiction. In addition, control of mesolimbic dopaminergic release via NPY receptors may take part in these functions. NPY in the NAc also participates in fat intake and emotional behavior. Accumbal NPY neurons and fibers may exert physiological and pathophysiological actions partly through neuroendocrine mechanisms and the autonomic nervous system.


1982 ◽  
Vol 92 (1) ◽  
pp. 37-42 ◽  
Author(s):  
H. M. A. MEIJS-ROELOFS ◽  
P. KRAMER ◽  
L. GRIBLING-HEGGE

A possible role of 5α-androstane-3α,17β-diol (3α-androstanediol) in the control of FSH secretion was studied at various ages in ovariectomized rats. In the rat strain used, vaginal opening, coincident with first ovulation, generally occurs between 37 and 42 days of age. If 3α-androstanediol alone was given as an ovarian substitute, an inhibitory effect on FSH release was evident with all three doses tested (50, 100, 300 μg/100 g body wt) between 13 and 30 days of age; at 33–35 days of age only the 300 μg dose caused some inhibition of FSH release. Results were more complex if 3α-androstanediol was given in combined treatment with oestradiol and progesterone. Given with progesterone, 3α-androstanediol showed a synergistic inhibitory action on FSH release between 20 and 30 days of age. However, when 3α-androstanediol was combined with oestradiol a clear decrease in effect, as compared to the effect of oestradiol alone, was found between 20 and 30 days of age. Also the effect of combined oestradiol and progesterone treatment was greater than the effect of combined treatment with oestradiol, progesterone and 3α-androstanediol. At all ages after day 20 none of the steroid combinations tested was capable of maintaining FSH levels in ovariectomized rats similar to those in intact rats. It is concluded that 3α-androstanediol might play a role in the control of FSH secretion in the immature rat, but after day 20 the potentially inhibitory action of 3α-androstanediol on FSH secretion is limited in the presence of oestradiol.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A45-A46
Author(s):  
Skyler Kanegi ◽  
Armen Akopian

Abstract Introduction The combination of artificial light and lack of exposure to natural light can delay the circadian clock, dysregulate the circadian cycle, and decrease alertness upon waking. This effect has been especially significant during the COVID-19 pandemic, where overexposure to artificial light at improper hours has contributed to increased rates of clinical insomnia. Artificial light may also contribute to concomitant neurological conditions such as primary headache, but the mechanisms by which light triggers sleep deprivation-induced headache are not well-understood. Methods To measure pain sensitivity, we habituated 13 wild-type male mice to von Frey filaments applied to the periorbital area until there was no response to 0.6g stimulus. We then applied 5 lux of continuous dim light to mice during their usual 12-hour dark cycle. The 12-hour light cycle remained unchanged with 200 lux continuous light. Three groups of mice experienced the dim light stimulus for one, three, or five consecutive days. Ambulation and rest activity were measured using SOF-812 Activity Monitor machines. After the experiment concluded, we waited 24 hours and measured mechanical threshold using von Frey filaments at 1, 3, 5, 8, and every 3 days subsequently until mice no longer responded to 0.6g stimulus. Results Artificial light triggered changes in circadian behavior including increased number of rest periods during 12-hour dark (dim light) cycle and shortened sleep duration during 12-hour light cycle. Following the artificial light stimulus, there was a significant decrease in mechanical threshold (P&lt;0.05), representing allodynia. The one-day group displayed one day of significant allodynia. The three-day group displayed three days of significant allodynia. The five-day group displayed five days of significant allodynia. Conclusion Artificial light may trigger circadian dysregulation, and the duration of artificial light exposure seemed to be directly correlated to the duration of allodynia up to one week after the stimulus was removed. We will repeat these experiments and analyze CNS and PNS tissue samples to understand the underlying physiological and biochemical bases of how artificial light triggers sleep deprivation-induced headache. This knowledge could increase our understanding of the pathophysiology and comorbidity of sleep deprivation and headache. Support (if any) Funding was received from the National Institute of Health (NS104200).


Sign in / Sign up

Export Citation Format

Share Document