scholarly journals Geniposide, a component of Gardenia jasminoides Ellis, inhibits NF-ĸB to attenuate LPS-induced injury in intestinal epithelial cells

2020 ◽  
Author(s):  
Yizhe Cui ◽  
Xinyue Qiao ◽  
Qiuju Wang ◽  
Rui Wu

Abstract Background: The nuclear factor-ĸB (NF-ĸB) transcriptional system is a major effector pathway involved in inflammatory responses. Previous studies found that a Gardenia decoction (GD) inhibited the expression of NF-κB in a lipopolysaccharide (LPS)-stimulated mouse intestinal injury model. Herein, we hypothesized that geniposide (GE), a component of Gardenia jasminoides Ellis, also exerts anti-inflammatory effects and inhibits NF-ĸB activity in LPS-induced intestinal epithelial cells (IEC-6). IEC-6 cells were stimulated with LPS, following which the effects of GE on NF-ĸB signaling in the IEC-6 cells were examined by western blotting to detect IĸB phosphorylation/degradation. The expression of NF-κB was determined by immunofluorescence assay (IFA). Enzyme-linked immunosorbent assay (ELISA) was used to detect the inhibitory effect of GE on the release of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) activated by LPS in IEC-6 cells. In addition, the migration ability of IEC-6 cells was observed by the scratch method. Results: These results showed that GE dose-dependently downregulated levels of the proinflammatory cytokines TNF-α, IL-6 and IL-1β that had been upregulated by LPS and suppressed the phosphorylation of IĸB and NF-ĸB induced by LPS. Our findings indicated that GE could reduce LPS-induced NF-ĸB signaling and proinflammatory expression in IEC-6 cells and significantly enhance the migration of IEC-6 cells. Moreover, GE inhibited the expression of NF-κB, nuclear transfer, and transcriptional activity in IEC-6 cells. Conclusion: GE could block the synthesis of inflammatory factors of IEC-6 cells by inhibiting activation of the IĸB/NF-κB signaling pathway induced by LPS.

Author(s):  
Qiuju Wang ◽  
Xinyue Qiao ◽  
Mengzu Wang ◽  
Junfeng Jia ◽  
and Yizhe Cui

The nuclear factor-ĸB (NF-ĸB) transcriptional system is a major effector pathway involved in inflammatory responses. Previous studies found that a Gardenia decoction (GD) inhibited the expression of NF-κB in a lipopolysaccharide (LPS)-stimulated mouse intestinal injury model. Herein, we hypothesized that geniposide (GE), a component of Gardenia jasminoides Ellis, also exerts anti-inflammatory effects and inhibits NF-ĸB activity in LPS-induced intestinal epithelial cells (IEC-6). IEC-6 cells were stimulated with LPS, following which the effects of GE on NF-ĸB signaling in the IEC-6 cells were examined by western blotting to detect IĸB phosphorylation/degradation. The expression of NF-κB was determined by immunofluorescence assay (IFA). Enzyme-linked immunosorbent assay (ELISA) was used to detect the inhibitory effect of GE on the release of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) activated by LPS in IEC-6 cells. In addition, the migration ability of IEC-6 cells was observed by the scratch method. These results showed that GE dose-dependently downregulated levels of the proinflammatory cytokines TNF-α, IL-6 and IL-1β that had been upregulated by LPS and suppressed the phosphorylation of IĸB and NF-ĸB induced by LPS. Our findings indicated that GE could reduce LPS-induced NF-ĸB signaling and proinflammatory expression in IEC-6 cells and significantly enhance the migration of IEC-6 cells. Moreover, GE inhibited the expression of NF-κB, nuclear transfer, and transcriptional activity in IEC-6 cells. GE could block the synthesis of inflammatory factors of IEC-6 cells by inhibiting activation of the IĸB/NF-κB signaling pathway induced by LPS.


2020 ◽  
Vol 26 (7) ◽  
pp. 627-634 ◽  
Author(s):  
Zhang Zhu ◽  
Li Xueying ◽  
Li Chunlin ◽  
Xiong Wen ◽  
Zeng Rongrong ◽  
...  

Berberine is an alkaloid extracted from medicinal plants such as Coptis chinensis and Phellodendron chinense. It possesses anti-inflammatory, anti-tumour and anti-oxidation properties, and regulates Glc and lipid metabolism. This study explored the mechanisms of the protective effects of berberine on barrier function and inflammatory damage in porcine intestinal epithelial cells (IPEC-J2) induced by LPS. We first evaluated the effects of berberine and LPS on cell viability. IPEC-J2 cells were treated with 5 μg/ml LPS for 1 h to establish an inflammatory model, and 75, 150 and 250 μg/ml berberine were used in further experiments. The expression of IL-1β, IL-6 and TNF-α was measured by RT-PCR. The key proteins of the NF-κB/MAPK signalling pathway (IκBα, p-IκBα, p65, p-p65, c-Jun N-terminal kinase (JNK), p-JNK, p38, p-p38, ERK1/2 and p-ERK1/2) were detected by Western blot. Upon exposure to LPS, IL-1β, IL-6 and TNF-α mRNA levels and p-IκBα p-p65 protein levels were significantly enhanced. Pre-treatment with berberine reduced the expression of inflammatory factors and was positively correlated with its concentration, and dose dependently inhibited the expression of IκBα, p-IκBα, p-p65, p-p38 and JNK. These results demonstrated that pre-treating intestinal epithelial cells with berberine was useful in preventing and treating diarrhoea induced by Escherichia coli in weaned pigs.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yan Zhang ◽  
Zhongqiu Wang ◽  
Jun Liu ◽  
Zhenyu Zhang ◽  
Ye Chen

Syndecan-1 (SDC1), with a long variable ectodomain carrying heparan sulfate chains, participates in many steps of inflammatory responses. But reports about the efforts of SDC1’s unshedding ectodomain on intestinal epithelial inflammation and the precise underlying mechanism are limited. In our study, unshedding SDC1 from intestinal epithelial cell models was established by transfecting with unshedding SDC1 plasmid into the cell, respectively. And the role of unshedding SDC1 in intestinal inflammation was further investigated. We found that components of NF-κB pathway, including P65 and IκBα, and secretion of TNF-αwere upregulated upon LPS stimulation in intestinal epithelial cells. SDC1, especially through its unshed ectodomain, significantly lessened the upregulation extent. It also functioned in inhibiting migration of neutrophils by downregulating secretion of CXCL-1. Taken together, we conclude that suppressing SDC1 shedding from intestinal epithelial cells relieves severity of intestinal inflammation by inactivating NF-κB pathway and downregulating TNF-αexpression. These results indicate that the ectodomain of SDC1 might be the optional therapy for intestinal inflammation.


2022 ◽  
Vol 12 (5) ◽  
pp. 1015-1021
Author(s):  
Gen Lin ◽  
Ruichun Long ◽  
Xiaoqing Yang ◽  
Songsong Mao ◽  
Hongying Li

Objective: The present study aimed to investigate the role of etomidate in intestinal cell ischemia and hypoxia-reperfusion injury and potential mechanisms. Method: In this study, we establish the intestinal epithelial cells ischemia-reperfusion model in vitro. CCK8 was used to detect cell viability and flow cytometry assay was used to detect apoptosis levels of treated OGD/R model cells. ELISA measured the expression level of oxidative stress factors and inflammatory factors. Furthermore, western blot assay was used to detect the expression the apoptosis-related factors and TNFR-associated factors in treated OGD/R model cells. Result: Etomidate does not affect the activity of intestinal epithelial cells, and can protect intestinal epithelial cells to reduce ischemiareperfusion injury, and the expression of inflammatory factors and oxidative stress in cells with mild intestinal epithelial ischemia-reperfusion injury. Etomidate alleviates apoptosis of intestinal epithelial ischemia-reperfusion injury cells. Etomidate inhibits the activation of traf6-mediated NF-κB signal during ischemia-anoxia reperfusion of intestinal epithelial cells. Conclusion: Taken together, our study demonstrated that etomidate attenuates inflammatory response and apoptosis in intestinal epithelial cells during ischemic hypoxia-reperfusion injury and inhibits activation of NF-κB signaling regulated by TRAF6.


2011 ◽  
Vol 1 (1) ◽  
pp. 16 ◽  
Author(s):  
S. Brijesh ◽  
Pundarikakshudu Tetali ◽  
Tannaz J. Birdi

Diarrhea is a major health concern in developing countries with enteropathogenic <em>Escherichia coli</em> (EPEC) being a leading cause of infantile diarrhea. Much of the pathology of EPEC infection is due to the inflammatory responses of infected intestinal epithelium through secretion of pro-inflammatory cytoki - nes such as interleukin (IL)-8. With medicinal plants gaining popularity as prospective antidiarrheal agents, we aimed to evaluate the effect of anti-diarrheal medicinal plants on secretion of IL-8 by epithelial cells in response to EPEC infection. The effect of the decoctions of four anti-diarrheal medicinal plants viz. <em>Aegle marmelos</em>, <em>Cyperus rotundus</em>, <em>Psidium guajava</em> and <em>Zingiber officinale</em> was studied on secretion of IL-8 by a human colon adenocarcinoma cell line, HT-29 infected with <em>E. coli </em>E2348/69. Two protocols were used viz. pre-incubation and post-incubation. The data obtained demonstrated that out of the four plants used, only <em>P. guajava</em> decreased secretion of IL-8 in the post-incubation protocol although in the pre-incubation protocol an increase was observed. A similar increase was seen with <em>C. rotundus</em> in the preincubation protocol. No effect on IL-8 secretion was observed with <em>A. marmelos</em> and <em>Z. officinale</em> in both protocols and with <em>C. rotundus </em>in the post-incubation protocol. The post-incubation protocol, in terms of clinical relevance, indicates the effect of the plant decoctions when used as treatment. Hence <em>P. guajava</em> may be effective in controlling the acute inflammatory response of the intestinal epithelial cells in response to EPEC infection.<p> </p>


2011 ◽  
Vol 140 (5) ◽  
pp. S-84
Author(s):  
Masaya Saito ◽  
Tomoo Nakagawa ◽  
Yoshiko Noguchi ◽  
Toru Sato ◽  
Tatsuro Katsuno ◽  
...  

2004 ◽  
Vol 287 (3) ◽  
pp. G592-G598 ◽  
Author(s):  
Caroline Francoeur ◽  
Fabrice Escaffit ◽  
Pierre H. Vachon ◽  
Jean-François Beaulieu

Laminins are basement membrane molecules that mediate cell functions such as adhesion, proliferation, migration, and differentiation. In the normal small intestine, laminin-5 and -10 are mainly expressed at the base of villus cells. However, in Crohn's disease (CD), a major redistribution of these laminins to the crypt region of the inflamed ileal mucosa has been observed, suggesting a possible relationship between laminin expression and cytokine and/or growth factor production, which is also altered in CD. The aim of this study was to test the hypothesis that proinflammatory cytokines can modulate laminin expression by intestinal epithelial cells. The effect of TNF-α, IFN-γ, IL-1β, IL-6, and transforming growth factor (TGF)-β was analyzed on the expression of laminins in the normal human intestinal epithelial crypt (HIEC) cell line. When treated with a single cytokine, HIEC cells secreted small amounts of laminin-5 and -10. Only TNF-α and TGF-β induced a slight increase in the secretion of these laminins. However, in combination, TNF-α and IFN-γ synergistically stimulated the secretion of both laminin-5 and -10 in HIEC cells. Transcript analyses suggested that the upregulation of the two laminins might depend on distinct mechanisms. Interestingly, the TNF-α and IFN-γ combination was also found to significantly promote apoptosis. However, the effect of cytokines on the secretion of laminins was maintained even after completely blocking apoptosis by inhibiting caspase activities. These results demonstrate that laminin production is specifically modulated by the proinflammatory cytokines TNF-α and IFN-γ in intestinal epithelial cells under an apoptosis-independent mechanism.


Sign in / Sign up

Export Citation Format

Share Document