scholarly journals A glycolysis-based 4-mRNA signature correlates with the prognosis and cell cycle process in patients with bladder cancer

2020 ◽  
Author(s):  
Chen Zhang ◽  
Xin Gou ◽  
Weiyang He ◽  
Huaan Yang ◽  
Hubin Yin

Abstract Background: Bladder cancer is one of the most prevalent malignancies worldwide. However, traditional indicators have limited predictive effects on the clinical outcomes of bladder cancer. The aim of this study was to develop and validate a glycolysis-related gene signature for predicting the prognosis of patients with bladder cancer that have limited therapeutic options. Methods: mRNA expression profiling was obtained from patients with bladder cancer from The Cancer Genome Atlas (TCGA) database. Gene set enrichment analysis (GSEA) was conducted to identify glycolytic gene sets that were significantly different between bladder cancer tissues and paired normal tissues . A prognosis-related gene signature was constructed by univariate and multivariate Cox analysis. Kaplan-Meier curves and time-dependent receiver operating characteristic (ROC) curves were utilized to evaluate the signature. A nomogram combined with the gene signature and clinical parameters was constructed. Correlations between glycolysis-related gene signature and molecular characterization as well as cancer subtypes were analyzed. RT-qPCR was applied to analyze gene expression. Functional experiments were performed to determine the role of PKM2 in the proliferation of bladder cancer cells. Results: Using a Cox proportional regression model, we established that a 4-mRNA signature (NUP205, NUPL2, PFKFB1 and PKM) was significantly associated with prognosis in bladder cancer patients. Based on the signature, patients were split into high and low risk groups, with different prognostic outcomes. The gene signature was an independent prognostic indicator for overall survival. The ability of the 4-mRNA signature to make an accurate prognosis was tested in two other validation datasets. GSEA was performed to explore the 4-mRNA related canonical pathways and biological processes, such as the cell cycle, hypoxia, p53 pathway, and PI3K/AKT/mTOR pathway. A heatmap showing the correlation between risk score and cell cycle signature was generated. RT-qPCR revealed the genes that were differentially expressed between normal and cancer tissues. Experiments showed that PKM2 plays essential roles in cell proliferation and the cell cycle. Conclusion: The established 4‑mRNA signature may act as a promising model for generating accurate prognoses for patients with bladder cancer, but the specific biological mechanism needs further verification.

2020 ◽  
Author(s):  
Chen Zhang ◽  
Xin Gou ◽  
Weiyang He ◽  
Huaan Yang ◽  
Hubin Yin

Abstract Background: Bladder cancer is one of the most prevalent malignancies worldwide. However, traditional indicators have limited predictive effects on the clinical outcomes of bladder cancer. The aim of this study was to develop and validate a glycolysis-related gene signature for predicting the prognosis of patients with bladder cancer that have limited therapeutic options.Methods: mRNA expression profiling was obtained from patients with bladder cancer from The Cancer Genome Atlas (TCGA) database. Gene set enrichment analysis (GSEA) was conducted to identify glycolytic gene sets that were significantly different between bladder cancer tissues and paired normal tissues. A prognosis-related gene signature was constructed by univariate and multivariate Cox analysis. Kaplan-Meier curves and time-dependent receiver operating characteristic (ROC) curves were utilized to evaluate the signature. A nomogram combined with the gene signature and clinical parameters was constructed. Correlations between glycolysis-related gene signature and molecular characterization as well as cancer subtypes were analyzed. RT-qPCR was applied to analyze gene expression. Functional experiments were performed to determine the role of PKM2 in the proliferation of bladder cancer cells.Results: Using a Cox proportional regression model, we established that a 4-mRNA signature (NUP205, NUPL2, PFKFB1 and PKM) was significantly associated with prognosis in bladder cancer patients. Based on the signature, patients were split into high and low risk groups, with different prognostic outcomes. The gene signature was an independent prognostic indicator for overall survival. The ability of the 4-mRNA signature to make an accurate prognosis was tested in two other validation datasets. GSEA was performed to explore the 4-mRNA related canonical pathways and biological processes, such as the cell cycle, hypoxia, p53 pathway, and PI3K/AKT/mTOR pathway. A heatmap showing the correlation between risk score and cell cycle signature was generated. RT-qPCR revealed the genes that were differentially expressed between normal and cancer tissues. Experiments showed that PKM2 plays essential roles in cell proliferation and the cell cycle.Conclusion: The established 4‑mRNA signature may act as a promising model for generating accurate prognoses for patients with bladder cancer, but the specific biological mechanism needs further verification.


2021 ◽  
Author(s):  
Jian Li ◽  
Yang Liu ◽  
Fei Liu ◽  
Qiang Tian ◽  
Baojiang Li ◽  
...  

Abstract It is well known that Breast cancer is a heterogeneous disease.Although the current recurrence and mortality rate have been greatly improved, many people still suffer relapse and metastasis.Metabolic reprograming is currently considered to be a new hallmark of cancer.Therefore,in this study, we comprehensively analyzed the prognostic effect of metabolic-related gene signatures in breast cancer and its relationship with the immune microenvironment.We constructed a novel metabolic-related gene signature containing 6 genes to distinguish between high and low risk groups by univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression, and validated its robustness and accuracy through multiple databases.The metabolic gene signature may be an independent risk factor for BC both in the training and the testing set,the nomogram has a moderately accurate performance,and the C index was 0.757 and 0.728 respectively.The signature can reveal metabolic characteristics based on gene set enrichment analysis and at the same time monitor the status of TME.This gene signature can be used as a promising independent prognostic marker for BC patients, and can indicate the current status of TME, providing more clues for exploring new diagnostic and treatment strategies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Peng Zhang ◽  
Qian Yang

SHMT2 was overexpressed in many tumors, however, the role of SHMT2 in bladder cancer (BLCA) remains unclear. We first analyzed the expression pattern of SHMT2 in BLCA using the TNMplot, Oncomine, the Cancer Genome Atlas (TCGA), and the Gene Expression Omnibus (GEO) databases. Next, the association between SHMT2 expression and overall survival (OS)/disease-free survival (DFS) in BLCA patients were analyzed using TCGA and PrognoScan database. The correlation between SHMT2 expression and clinicopathology was determined using TCGA database. Furthermore, the genes co-expressed with SHMT2 and their underlying molecular function in BLCA were explored based on the Oncomine database, Metascape and gene set enrichment analysis (GSEA). Finally, the effects of SHMT2 on cell proliferation, cell cycle, and apoptosis were assessed using in vitro experiments. As a results, SHMT2 was significantly overexpressed in BLCA tissues and cells compared to normal bladder tissues and cells. A high SHMT2 expression predicts a poor OS of BLCA patients. In addition, SHMT2 expression was higher in patients with a high tumor grade and in those who were older than 60 years. However, the expression of SHMT2 was not correlated with gender, tumor stage, lymph node stage, and distant metastasis stage. Finally, overexpression of SHMT2 promoted BLCA cell proliferation and suppressed apoptosis, the silencing of SHMT2 significantly inhibited BLCA cell proliferation by impairing the cell cycle, and promoting apoptosis. SHMT2 mediates BLCA cells growth by regulating STAT3 signaling. In summary, SHMT2 regulates the proliferation, cell cycle and apoptosis of BLCA cells, and may act as a candidate therapeutic target for BLCA.


2021 ◽  
Vol 30 ◽  
pp. 096368972110013
Author(s):  
Ying Chen ◽  
Jia Zhao

Tumor microenvironment (TME) changes are related to the occurrence and development of colon adenocarcinoma (COAD). This study aimed to analyze the characteristics of the immune microenvironment in CC, as well as the microenvironment’s relationship with the clinical features of CC. Based on The Cancer Genome Atlas (TCGA) and GSE39582 cohorts, the scores of 22 tumor infiltrating lymphocytes (TILs) were calculated using CIBERSORT. ConsensusClusterPlus was used for unsupervised clustering. Three TME subtypes (TMEC1, TMEC2, and TME3) were identified based on TIL scores. TMEC2 was associated with the worst prognosis. Random forest, k-means clustering, and principal component analysis were used to construct the TME score risk signature. The median TME score was used to divide the samples into high- and low-risk groups. The prognoses of the patients with high TME scores were worse than those of the patients with low TME scores. A high TME score was an independent prognostic risk factor for patients with colon cancer. The Gene Set Enrichment Analysis (GSEA) results showed that those with high TME scores were enriched in FOCAL_ADHESION, ECM_RECEPTOR_INTERACTION, and PATHWAYS_IN_CANCER. Our findings will provide a new strategy for immunotherapy in patients with CC.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii28-ii28
Author(s):  
Alvaro Alvarado ◽  
Kaleab Tessema ◽  
Kunal Patel ◽  
Riki Kawaguchi ◽  
Richard Everson ◽  
...  

Abstract Despite efforts to gain a deeper understanding of its molecular architecture, glioblastoma (GBM) remains uniformly fatal. While genome-based molecular subtyping has revealed that GBMs may be parsed into several molecularly distinct categories, this insight has yielded little progress towards extending patient survival. In particular, the great phenotypic heterogeneity of GBM – both inter and intratumorally – has hindered therapeutic efforts. To this end, we interrogated tumor samples using a pathway-based approach to resolve tumoral heterogeneity. Gene set enrichment analysis (GSEA) was applied to gene expression data and used to provide an overview of each sample that can be compared to other samples by generating sample clusters based on overall patterns of enrichment. The Cancer Genome Atlas (TCGA) samples were clustered using the canonical and oncogenic signatures and in both cases the clustering was distinct from the molecular subtype previously reported and clusters were informative of patient survival. We also analyzed single cell RNA sequencing datasets and uniformly found two clusters of cells enriched for cell cycle regulation and survival pathways. We have validated our approach by generating gene lists from common elements found in the top contributing genesets for a particular cluster and testing the top targets in appropriate gliomasphere patient-derived lines. Samples enriched for cell cycle related genesets showed a decrease in sphere formation capacity when E2F1, out top target, was silenced and when treated with fulvestrant and calcitriol, which were identified as potential drugs targeting this genelist. Conversely, no changes were observed in samples not enriched for this gene list. Finally, we interrogated spatial heterogeneity and found higher enrichment of the proliferative signature in contrast enhancing compared with non-enhancing regions. Our studies relate inter- and intratumoral heterogeneity to critical cellular pathways dysregulated in GBM, with the ultimate goal of establishing a pipeline for patient- and tumor-specific precision medicine.


2021 ◽  
Vol 27 ◽  
Author(s):  
Aoshuang Qi ◽  
Mingyi Ju ◽  
Yinfeng Liu ◽  
Jia Bi ◽  
Qian Wei ◽  
...  

Background: Complex antigen processing and presentation processes are involved in the development and progression of breast cancer (BC). A single biomarker is unlikely to adequately reflect the complex interplay between immune cells and cancer; however, there have been few attempts to find a robust antigen processing and presentation-related signature to predict the survival outcome of BC patients with respect to tumor immunology. Therefore, we aimed to develop an accurate gene signature based on immune-related genes for prognosis prediction of BC.Methods: Information on BC patients was obtained from The Cancer Genome Atlas. Gene set enrichment analysis was used to confirm the gene set related to antigen processing and presentation that contributed to BC. Cox proportional regression, multivariate Cox regression, and stratified analysis were used to identify the prognostic power of the gene signature. Differentially expressed mRNAs between high- and low-risk groups were determined by KEGG analysis.Results: A three-gene signature comprising HSPA5 (heat shock protein family A member 5), PSME2 (proteasome activator subunit 2), and HLA-F (major histocompatibility complex, class I, F) was significantly associated with OS. HSPA5 and PSME2 were protective (hazard ratio (HR) < 1), and HLA-F was risky (HR > 1). Risk score, estrogen receptor (ER), progesterone receptor (PR) and PD-L1 were independent prognostic indicators. KIT and ACACB may have important roles in the mechanism by which the gene signature regulates prognosis of BC.Conclusion: The proposed three-gene signature is a promising biomarker for estimating survival outcomes in BC patients.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11273
Author(s):  
Lei Yang ◽  
Weilong Yin ◽  
Xuechen Liu ◽  
Fangcun Li ◽  
Li Ma ◽  
...  

Background Hepatocellular carcinoma (HCC) is considered to be a malignant tumor with a high incidence and a high mortality. Accurate prognostic models are urgently needed. The present study was aimed at screening the critical genes for prognosis of HCC. Methods The GSE25097, GSE14520, GSE36376 and GSE76427 datasets were obtained from Gene Expression Omnibus (GEO). We used GEO2R to screen differentially expressed genes (DEGs). A protein-protein interaction network of the DEGs was constructed by Cytoscape in order to find hub genes by module analysis. The Metascape was performed to discover biological functions and pathway enrichment of DEGs. MCODE components were calculated to construct a module complex of DEGs. Then, gene set enrichment analysis (GSEA) was used for gene enrichment analysis. ONCOMINE was employed to assess the mRNA expression levels of key genes in HCC, and the survival analysis was conducted using the array from The Cancer Genome Atlas (TCGA) of HCC. Then, the LASSO Cox regression model was performed to establish and identify the prognostic gene signature. We validated the prognostic value of the gene signature in the TCGA cohort. Results We screened out 10 hub genes which were all up-regulated in HCC tissue. They mainly enrich in mitotic cell cycle process. The GSEA results showed that these data sets had good enrichment score and significance in the cell cycle pathway. Each candidate gene may be an indicator of prognostic factors in the development of HCC. However, hub genes expression was weekly associated with overall survival in HCC patients. LASSO Cox regression analysis validated a five-gene signature (including CDC20, CCNB2, NCAPG, ASPM and NUSAP1). These results suggest that five-gene signature model may provide clues for clinical prognostic biomarker of HCC.


2020 ◽  
Author(s):  
Mohamed Elshaer ◽  
Ahmed Hammad ◽  
Xiu Jun Wang ◽  
Xiuwen Tang

Abstract BackgroundKEAP1-NRF2 pathway alterations were identified in many cancers including, esophageal cancer (ESCA). Identifying biomarkers that are associated with mutations in this pathway will aid in defining this cancer subset; and hence in supporting precision and personalized medicine. MethodsIn this study, 182 tumor samples from the Cancer Genome Atlas (TCGA)-ESCA RNA-Seq V2 level 3 data were segregated into two groups KEAP1-NRF2-mutated (22) and wild-type (160).The two groups were subjected to differential gene expression analysis, and we performed Gene Set Enrichment Analysis (GSEA) to determine all significantly affected biological pathways. Then, the enriched gene set was integrated with the differentially expressed genes (DEGs) to identify a gene signature regulated by the KEAP1-NRF2 pathway in ESCA. Furthermore, we validated the gene signature using mRNA expression data of ESCA cell lines provided by the Cancer Cell Line Encyclopedia (CCLE). The identified signature was tested in 3 independent ESCA datasets to assess its prognostic value.ResultsWe identified 11 epithelial-mesenchymal transition (EMT) genes regulated by the KEAP1-NRF2 pathway in ESCA patients. Five of the 11 genes showed significant over-expression in KEAP1-NRF2-mutated ESCA cell lines. In addition, the over-expression of these five genes was significantly associated with poor survival in 3 independent ESCA datasets, including the TCGA-ESCA dataset.ConclusionAltogether, we identified a novel EMT 5-gene signature regulated by the KEAP1-NRF2 axis and this signature is strongly associated with metastasis and drug resistance in ESCA. These 5-genes are potential biomarkers and therapeutic targets for ESCA patients in whom the KEAP1-NRF2 pathway is altered.


2021 ◽  
Vol 8 ◽  
Author(s):  
Liang-Hao Zhang ◽  
Long-Qing Li ◽  
Yong-Hao Zhan ◽  
Zhao-Wei Zhu ◽  
Xue-Pei Zhang

BackgroundIdentify immune-related gene pairs (IRGPs) signature related to the prognosis and immunotherapeutic efficiency for bladder cancer (BLCA) patients.Materials and MethodsOne RNA-seq dataset (The Cancer Genome Atlas Program) and two microarray datasets (GSE13507 and GSE31684) were included in this study. We defined these cohorts as training set to construct IRGPs and one immunotherapy microarray dataset as validation set. Identifying BLCA subclasses based on IRGPs by consensus clustering. The Lasso penalized Cox proportional hazards regression model was used to construct prognostic signature and potential molecular mechanisms were analyzed.ResultsThis signature can accurately predict the overall survival of BLCA patients and was verified in the immunotherapy validation set. IRGP-signatures can be used as independent prognostic risk factor in various clinical subgroups. Use the CIBERSORT algorithm to assess the abundance of infiltrating immune cells in each sample, and combine the results of the gene set enrichment analysis of a single sample to explore the differences in the immune microenvironment between IRPG signature groups. According to the results of GSVA, GSEA, and CIBERSORT algorithm, we found that IRGP is strikingly positive correlated with tumor microenvironment (TME) stromal cells infiltration, indicating that the poor prognosis and immunotherapy might be caused partly by enrichment of stromal cells. Finally, the results from the TIDE analysis revealed that IRGP could efficiently predict the response of immunotherapy in BLCA.ConclusionThe novel IRGP signature has a significant prognostic value for BLCA patients might facilitate personalized for immunotherapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Facai Zhang ◽  
Xiaoming Wang ◽  
Yunjin Bai ◽  
Huan Hu ◽  
Yubo Yang ◽  
...  

ObjectivesThis study aimed to develop and validate a hypoxia signature for predicting survival outcomes in patients with bladder cancer.MethodsWe downloaded the RNA sequence and the clinicopathologic data of the patients with bladder cancer from The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/repository?facetTab=files) and the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) databases. Hypoxia genes were retrieved from the Molecular Signatures Database (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp). Differentially expressed hypoxia-related genes were screened by univariate Cox regression analysis and Lasso regression analysis. Then, the selected genes constituted the hypoxia signature and were included in multivariate Cox regression to generate the risk scores. After that, we evaluate the predictive performance of this signature by multiple receiver operating characteristic (ROC) curves. The CIBERSORT tool was applied to investigate the relationship between the hypoxia signature and the immune cell infiltration, and the maftool was used to summarize and analyze the mutational data. Gene-set enrichment analysis (GSEA) was used to investigate the related signaling pathways of differentially expressed genes in both risk groups. Furthermore, we developed a model and presented it with a nomogram to predict survival outcomes in patients with bladder cancer.ResultsEight genes (AKAP12, ALDOB, CASP6, DTNA, HS3ST1, JUN, KDELR3, and STC1) were included in the hypoxia signature. The patients with higher risk scores showed worse overall survival time than the ones with lower risk scores in the training set (TCGA) and two external validation sets (GSE13507 and GSE32548). Immune infiltration analysis showed that two types of immune cells (M0 and M1 macrophages) had a significant infiltration in the high-risk group. Tumor mutation burden (TMB) analysis showed that the risk scores between the wild types and the mutation types of TP53, MUC16, RB1, and FGFR3 were significantly different. Gene-Set Enrichment Analysis (GSEA) showed that immune or cancer-associated pathways belonged to the high-risk groups and metabolism-related signal pathways were enriched into the low-risk group. Finally, we constructed a predictive model with risk score, age, and stage and validated its performance in GEO datasets.ConclusionWe successfully constructed and validated a novel hypoxia signature in bladder cancer, which could accurately predict patients’ prognosis.


Sign in / Sign up

Export Citation Format

Share Document