scholarly journals Identification of an Immune Gene Signature Based on Tumor Microenvironment Characteristics in Colon Adenocarcinoma

2021 ◽  
Vol 30 ◽  
pp. 096368972110013
Author(s):  
Ying Chen ◽  
Jia Zhao

Tumor microenvironment (TME) changes are related to the occurrence and development of colon adenocarcinoma (COAD). This study aimed to analyze the characteristics of the immune microenvironment in CC, as well as the microenvironment’s relationship with the clinical features of CC. Based on The Cancer Genome Atlas (TCGA) and GSE39582 cohorts, the scores of 22 tumor infiltrating lymphocytes (TILs) were calculated using CIBERSORT. ConsensusClusterPlus was used for unsupervised clustering. Three TME subtypes (TMEC1, TMEC2, and TME3) were identified based on TIL scores. TMEC2 was associated with the worst prognosis. Random forest, k-means clustering, and principal component analysis were used to construct the TME score risk signature. The median TME score was used to divide the samples into high- and low-risk groups. The prognoses of the patients with high TME scores were worse than those of the patients with low TME scores. A high TME score was an independent prognostic risk factor for patients with colon cancer. The Gene Set Enrichment Analysis (GSEA) results showed that those with high TME scores were enriched in FOCAL_ADHESION, ECM_RECEPTOR_INTERACTION, and PATHWAYS_IN_CANCER. Our findings will provide a new strategy for immunotherapy in patients with CC.

2020 ◽  
Author(s):  
Chen Zhang ◽  
Xin Gou ◽  
Weiyang He ◽  
Huaan Yang ◽  
Hubin Yin

Abstract Background: Bladder cancer is one of the most prevalent malignancies worldwide. However, traditional indicators have limited predictive effects on the clinical outcomes of bladder cancer. The aim of this study was to develop and validate a glycolysis-related gene signature for predicting the prognosis of patients with bladder cancer that have limited therapeutic options.Methods: mRNA expression profiling was obtained from patients with bladder cancer from The Cancer Genome Atlas (TCGA) database. Gene set enrichment analysis (GSEA) was conducted to identify glycolytic gene sets that were significantly different between bladder cancer tissues and paired normal tissues. A prognosis-related gene signature was constructed by univariate and multivariate Cox analysis. Kaplan-Meier curves and time-dependent receiver operating characteristic (ROC) curves were utilized to evaluate the signature. A nomogram combined with the gene signature and clinical parameters was constructed. Correlations between glycolysis-related gene signature and molecular characterization as well as cancer subtypes were analyzed. RT-qPCR was applied to analyze gene expression. Functional experiments were performed to determine the role of PKM2 in the proliferation of bladder cancer cells.Results: Using a Cox proportional regression model, we established that a 4-mRNA signature (NUP205, NUPL2, PFKFB1 and PKM) was significantly associated with prognosis in bladder cancer patients. Based on the signature, patients were split into high and low risk groups, with different prognostic outcomes. The gene signature was an independent prognostic indicator for overall survival. The ability of the 4-mRNA signature to make an accurate prognosis was tested in two other validation datasets. GSEA was performed to explore the 4-mRNA related canonical pathways and biological processes, such as the cell cycle, hypoxia, p53 pathway, and PI3K/AKT/mTOR pathway. A heatmap showing the correlation between risk score and cell cycle signature was generated. RT-qPCR revealed the genes that were differentially expressed between normal and cancer tissues. Experiments showed that PKM2 plays essential roles in cell proliferation and the cell cycle.Conclusion: The established 4‑mRNA signature may act as a promising model for generating accurate prognoses for patients with bladder cancer, but the specific biological mechanism needs further verification.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1535
Author(s):  
Renshen Xiang ◽  
Yuhang Ge ◽  
Wei Song ◽  
Jun Ren ◽  
Can Kong ◽  
...  

Background: The potential role of pyroptosis in tumor microenvironment (TME) reprogramming and immunotherapy has received increasing attention. As most studies have concentrated on a single TME cell type or a single pyroptosis regulator (PR), the overall TME cell-infiltrating characteristics mediated by the integrated roles of multiple PRs have not been comprehensively recognized. Methods: This study curated 33 PRs and conducted consensus clustering to identify distinct pyroptosis patterns in gastric cancer (GC) patients. A single-sample gene set enrichment analysis algorithm was used to quantify the infiltration density of TME immune cells and the enrichment scores of well-defined biological signatures. The pyroptosis patterns of individuals were quantified using a principal component analysis algorithm called the pyroptosis score (PS). Results: Three distinct pyroptosis patterns with significant survival differences were identified from 1422 GC samples; these patterns were closely associated with three TME cell-infiltrating landscapes—namely, the immune-inflamed, immune-excluded, and immune-desert phenotypes. The PS model generated on the basis of the pyroptosis pattern-related signature genes could accurately predict the TME status, existing molecular subtypes, genetic variation, therapeutic response, and clinical outcome; among which, a relatively high PS was highly consistent with immune activation, molecular subtypes with survival advantages, high tumor mutation burden, high microsatellite instability, and other favorable characteristics. In particular, from the Cancer Genome Atlas database, the PS model exhibited significant prognostic relevance in a pan-cancer analysis, and patients with a relatively high PS exhibited durable therapeutic advantages and better prognostic benefits in anti-PD1/L1 therapy. Conclusions: This study demonstrates that pyroptosis is prominently correlated with TME diversity and complexity, and quantification of the pyroptosis patterns of individuals will enhance our cognition of TME infiltration landscapes and help in formulating more effective immunotherapeutic strategies.


2020 ◽  
Author(s):  
Chen Zhang ◽  
Xin Gou ◽  
Weiyang He ◽  
Huaan Yang ◽  
Hubin Yin

Abstract Background: Bladder cancer is one of the most prevalent malignancies worldwide. However, traditional indicators have limited predictive effects on the clinical outcomes of bladder cancer. The aim of this study was to develop and validate a glycolysis-related gene signature for predicting the prognosis of patients with bladder cancer that have limited therapeutic options. Methods: mRNA expression profiling was obtained from patients with bladder cancer from The Cancer Genome Atlas (TCGA) database. Gene set enrichment analysis (GSEA) was conducted to identify glycolytic gene sets that were significantly different between bladder cancer tissues and paired normal tissues . A prognosis-related gene signature was constructed by univariate and multivariate Cox analysis. Kaplan-Meier curves and time-dependent receiver operating characteristic (ROC) curves were utilized to evaluate the signature. A nomogram combined with the gene signature and clinical parameters was constructed. Correlations between glycolysis-related gene signature and molecular characterization as well as cancer subtypes were analyzed. RT-qPCR was applied to analyze gene expression. Functional experiments were performed to determine the role of PKM2 in the proliferation of bladder cancer cells. Results: Using a Cox proportional regression model, we established that a 4-mRNA signature (NUP205, NUPL2, PFKFB1 and PKM) was significantly associated with prognosis in bladder cancer patients. Based on the signature, patients were split into high and low risk groups, with different prognostic outcomes. The gene signature was an independent prognostic indicator for overall survival. The ability of the 4-mRNA signature to make an accurate prognosis was tested in two other validation datasets. GSEA was performed to explore the 4-mRNA related canonical pathways and biological processes, such as the cell cycle, hypoxia, p53 pathway, and PI3K/AKT/mTOR pathway. A heatmap showing the correlation between risk score and cell cycle signature was generated. RT-qPCR revealed the genes that were differentially expressed between normal and cancer tissues. Experiments showed that PKM2 plays essential roles in cell proliferation and the cell cycle. Conclusion: The established 4‑mRNA signature may act as a promising model for generating accurate prognoses for patients with bladder cancer, but the specific biological mechanism needs further verification.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yangming Hou ◽  
Yingjuan Xu ◽  
Dequan Wu

AbstractThe infiltration degree of immune and stromal cells has been shown clinically significant in tumor microenvironment (TME). However, the utility of stromal and immune components in Gastric cancer (GC) has not been investigated in detail. In the present study, ESTIMATE and CIBERSORT algorithms were applied to calculate the immune/stromal scores and the proportion of tumor-infiltrating immune cell (TIC) in GC cohort, including 415 cases from The Cancer Genome Atlas (TCGA) database. The differentially expressed genes (DEGs) were screened by Cox proportional hazard regression analysis and protein–protein interaction (PPI) network construction. Then ADAMTS12 was regarded as one of the most predictive factors. Further analysis showed that ADAMTS12 expression was significantly higher in tumor samples and correlated with poor prognosis. Gene Set Enrichment Analysis (GSEA) indicated that in high ADAMTS12 expression group gene sets were mainly enriched in cancer and immune-related activities. In the low ADAMTS12 expression group, the genes were enriched in the oxidative phosphorylation pathway. CIBERSORT analysis for the proportion of TICs revealed that ADAMTS12 expression was positively correlated with Macrophages M0/M1/M2 and negatively correlated with T cells follicular helper. Therefore, ADAMTS12 might be a tumor promoter and responsible for TME status and tumor energy metabolic conversion.


2021 ◽  
Vol 49 (5) ◽  
pp. 030006052110162
Author(s):  
Yangming Hou ◽  
Xin Wang ◽  
Junwei Wang ◽  
Xuemei Sun ◽  
Xinbo Liu ◽  
...  

Objectives The present study aimed to develop a gene signature based on the ESTIMATE algorithm in hepatocellular carcinoma (HCC) and explore possible cancer promoters. Methods The ESTIMATE and CIBERSORT algorithms were applied to calculate the immune/stromal scores and the proportion of tumor-infiltrating immune cells (TICs) in a cohort of HCC patients. The differentially expressed genes (DEGs) were screened by Cox proportional hazards regression analysis and protein–protein interaction (PPI) network construction. Cyclin B1 (CCNB1) function was verified using experiments. Results The stromal and immune scores were associated with clinicopathological factors and recurrence-free survival (RFS) in HCC patients. In total, 546 DEGs were up-regulated in low score groups, 127 of which were associated with RFS. CCNB1 was regarded as the most predictive factor closely related to prognosis of HCC and could be a cancer promoter. Gene Set Enrichment Analysis (GSEA) and CIBERSORT analyses indicated that CCNB1 levels influenced HCC tumor microenvironment (TME) immune activity. Conclusions The ESTIMATE signature can be used as a prognosis tool in HCC. CCNB1 is a tumor promoter and contributes to TME status conversion.


2021 ◽  
Vol 27 ◽  
Author(s):  
Aoshuang Qi ◽  
Mingyi Ju ◽  
Yinfeng Liu ◽  
Jia Bi ◽  
Qian Wei ◽  
...  

Background: Complex antigen processing and presentation processes are involved in the development and progression of breast cancer (BC). A single biomarker is unlikely to adequately reflect the complex interplay between immune cells and cancer; however, there have been few attempts to find a robust antigen processing and presentation-related signature to predict the survival outcome of BC patients with respect to tumor immunology. Therefore, we aimed to develop an accurate gene signature based on immune-related genes for prognosis prediction of BC.Methods: Information on BC patients was obtained from The Cancer Genome Atlas. Gene set enrichment analysis was used to confirm the gene set related to antigen processing and presentation that contributed to BC. Cox proportional regression, multivariate Cox regression, and stratified analysis were used to identify the prognostic power of the gene signature. Differentially expressed mRNAs between high- and low-risk groups were determined by KEGG analysis.Results: A three-gene signature comprising HSPA5 (heat shock protein family A member 5), PSME2 (proteasome activator subunit 2), and HLA-F (major histocompatibility complex, class I, F) was significantly associated with OS. HSPA5 and PSME2 were protective (hazard ratio (HR) < 1), and HLA-F was risky (HR > 1). Risk score, estrogen receptor (ER), progesterone receptor (PR) and PD-L1 were independent prognostic indicators. KIT and ACACB may have important roles in the mechanism by which the gene signature regulates prognosis of BC.Conclusion: The proposed three-gene signature is a promising biomarker for estimating survival outcomes in BC patients.


2020 ◽  
Vol 40 (8) ◽  
Author(s):  
Sihan Chen ◽  
Guodong Cao ◽  
Wei Wu ◽  
Yida Lu ◽  
Xiaobo He ◽  
...  

Abstract Colon adenocarcinoma (COAD) is a malignant gastrointestinal tumor, often occurring in the left colon, which is regulated by glycolysis-related processes. In past studies, multiple genes that influence the prognosis for survival have been discovered through bioinformatics analysis. However, the prediction of disease prognosis using a single gene is not an accurate method. In the present study, a mechanistic model was established to achieve better prediction for the prognosis of COAD. COAD-related data downloaded from The Cancer Genome Atlas (TCGA) were correlated with the glycolysis process using gene set enrichment analysis (GSEA) to determine the glycolysis-related genes that regulate COAD. Using COX regression analysis, glycolysis-related genes associated with the prognosis of COAD were identified, and the genes screened to establish a predictive model. The risk scores of this model were correlated with relevant clinical data to obtain a connection diagram between the model and survival rate, tumor characteristic data, etc. Finally, genes in the model were correlated with cells in the tumor microenvironment, finding that they affected specific immune cells in the model. Seven genes related to glycolysis were identified (PPARGC1A, DLAT, 6PC2, P4HA1, STC2, ANKZF1, and GPC1), which affect the prognosis of patients with COAD and constitute the model for prediction of survival of COAD patients.


2020 ◽  
Author(s):  
Mohamed Elshaer ◽  
Ahmed Hammad ◽  
Xiu Jun Wang ◽  
Xiuwen Tang

Abstract BackgroundKEAP1-NRF2 pathway alterations were identified in many cancers including, esophageal cancer (ESCA). Identifying biomarkers that are associated with mutations in this pathway will aid in defining this cancer subset; and hence in supporting precision and personalized medicine. MethodsIn this study, 182 tumor samples from the Cancer Genome Atlas (TCGA)-ESCA RNA-Seq V2 level 3 data were segregated into two groups KEAP1-NRF2-mutated (22) and wild-type (160).The two groups were subjected to differential gene expression analysis, and we performed Gene Set Enrichment Analysis (GSEA) to determine all significantly affected biological pathways. Then, the enriched gene set was integrated with the differentially expressed genes (DEGs) to identify a gene signature regulated by the KEAP1-NRF2 pathway in ESCA. Furthermore, we validated the gene signature using mRNA expression data of ESCA cell lines provided by the Cancer Cell Line Encyclopedia (CCLE). The identified signature was tested in 3 independent ESCA datasets to assess its prognostic value.ResultsWe identified 11 epithelial-mesenchymal transition (EMT) genes regulated by the KEAP1-NRF2 pathway in ESCA patients. Five of the 11 genes showed significant over-expression in KEAP1-NRF2-mutated ESCA cell lines. In addition, the over-expression of these five genes was significantly associated with poor survival in 3 independent ESCA datasets, including the TCGA-ESCA dataset.ConclusionAltogether, we identified a novel EMT 5-gene signature regulated by the KEAP1-NRF2 axis and this signature is strongly associated with metastasis and drug resistance in ESCA. These 5-genes are potential biomarkers and therapeutic targets for ESCA patients in whom the KEAP1-NRF2 pathway is altered.


2019 ◽  
Author(s):  
rui kong ◽  
Nan Wang ◽  
Wei Han ◽  
Yuejuan Zheng ◽  
Jie Lu

Abstract Background: In recent years, long non-coding RNAs (lncRNAs) are emerging as crucial regulators in the immunological process of liver hepatocellular carcinoma (LIHC). Increasing studies have found that some lncRNAs could be used as a diagnostic or therapeutic target for clinical management, but little research has investigated the role of immune-related lncRNA in tumor prognosis. In this study, we aimed to develop an immune lncRNA signature for the precise diagnosis and prognosis of liver hepatocellular carcinoma. Methods: Gene expression profiles of LIHC samples obtained from TCGA were screened for immune-related genes using two reference gene sets. The optimal immune-related lncRNA signature was built via correlational analysis, univariate and multivariate cox analysis. Then the Kaplan-Meier plot, ROC curve, clinical analysis, gene set enrichment analysis, and principal component analysis were carried out to evaluate the capability of immune lncRNA signature as a prognostic indicator. Results: Six long non-coding RNA MSC−AS1, AC009005.1, AL117336.3, AL031985.3, AL365203.2, AC099850.3 were identified via correlation analysis and cox regression analysis considering their interactions with immune genes. Next, tumor samples were separated into two risk groups by the signature with different clinical outcomes. Stratification analysis showed the prognostic ability of this signature acted as an independent factor. The AUC value of ROC curve was 0.779. The Kaplan-Meier method was used in survival analysis and results showed a statistical difference between the two risk groups. The predictive performance of this signature was validated by principal component analysis (PCA). Data from gene set enrichment analysis (GSEA) further unveiled several potential biological processes of these biomarkers may involve in. Conclusion: In summary, the study demonstrated the potential role of the six-lncRNA signature served as an independent prognostic factor for LIHC patients.


2021 ◽  
Author(s):  
kai wang ◽  
Jun xing Feng ◽  
Zhi ling Zheng ◽  
Ying ze Chai ◽  
Hui jun Yu ◽  
...  

Abstract Background: Transient receptor potential cation channel subfamily V member 4 (TRPV4) has been reported to regulate tumor progression in many tumor types. However, its association with the tumor immune microenvironment remains unclear.Methods: TRPV4 expression was assessed using data from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) database. The clinical features and prognostic roles of TRPV4 were assessed using TCGA cohort. Gene set enrichment analysis (GSEA) of TRPV4 was conducted using the R package clusterProfiler. We analyzed the association between TRPV4 and immune cell infiltration scores of TCGA samples downloaded from published articles and the TIMER2 database.Results: TRPV4 was highly expressed and associated with worse overall survival (OS), disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval (PFI) in colon adenocarcinoma (COAD) and ovarian cancer. Furthermore, TRPV4 expression was closely associated with immune regulation-related pathways. Moreover, tumor-associated macrophage (TAM) infiltration levels were positively correlated with TRPV4 expression in TCGA pan-cancer samples. Immunosuppressive genes such as PD-L1, PD-1, CTLA4, LAG3, TIGIT, TGFB1, and TGFBR1 were positively correlated with TRPV4 expression in most tumors.Conclusions: Our results suggest that TRPV4 is an oncogene and a prognostic marker in COAD and ovarian cancer. High TRPV4 expression is associated with tumor immunosuppressive status and may contribute to TAM infiltration based on TCGA data from pan-cancer samples.


Sign in / Sign up

Export Citation Format

Share Document