The CsLAZY1 Mediates Shoot Gravitropism and Branch Angle in Tea Plant (Camellia Sinensis)

Author(s):  
Xiaobo Xia ◽  
Xiaozeng Mi ◽  
Ling Jin ◽  
Rui Guo ◽  
Junyan Zhu ◽  
...  

Abstract Background: The tea plant (Camellia sinensis) architecture not only affects tea quality and yield, but also influences the efficiency of automatic pruning of tea plants. However, the molecular mechanism of branch angle that important aspect of plant architecture is poorly understood in tea plant. Results: In the present study, three CsLAZY genes were identified from the tea plant genome data through sequence homology. Phylogenetic tree displayed that the CsLAZY genes have high sequence similarity with LAZY genes from other plant species, especially those in woody plants. The expression patterns of the three CsLAZYs in eight tissues were surveyed, and we further verified the expression levels of the key CsLAZY1 transcript in different tissues among eight tea cultivars, demonstrating that CsLAZY1 was highly expressed in stem. Subcellular localization analysis showed that CsLAZY1 protein was localized in the plasma membrane. Remarkably, CsLAZY1 was transferred into Arabidopsis thaliana to investigate its potential role in regulating shoot development, demonstrating that the over-expressed plants responded more effectively than the wild types under gravity processing in light and dark. The results indicate that CsLAZY1 plays an important role in regulating shoot gravitropism in tea plant.Conclusions: The results provide evidence that CsLAZY1 may plays a critical role in regulating shoot gravitropism, and further affecting stem branch angle in tea plant.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaobo Xia ◽  
Xiaozeng Mi ◽  
Ling Jin ◽  
Rui Guo ◽  
Junyan Zhu ◽  
...  

Abstract Background Branch angle is a pivotal component of tea plant architecture. Tea plant architecture not only affects tea quality and yield but also influences the efficiency of automatic tea plant pruning. However, the molecular mechanism controlling the branch angle, which is an important aspect of plant architecture, is poorly understood in tea plants. Results In the present study, three CsLAZY genes were identified from tea plant genome data through sequence homology analysis. Phylogenetic tree displayed that the CsLAZY genes had high sequence similarity with LAZY genes from other plant species, especially those in woody plants. The expression patterns of the three CsLAZYs were surveyed in eight tissues. We further verified the expression levels of the key CsLAZY1 transcript in different tissues among eight tea cultivars and found that CsLAZY1 was highly expressed in stem. Subcellular localization analysis showed that the CsLAZY1 protein was localized in the plasma membrane. CsLAZY1 was transferred into Arabidopsis thaliana to investigate its potential role in regulating shoot development. Remarkably, the CsLAZY1 overexpressed plants responded more effectively than the wild-type plants to a gravity inversion treatment under light and dark conditions. The results indicate that CsLAZY1 plays an important role in regulating shoot gravitropism in tea plants. Conclusions The results provide important evidence for understanding the functions of CsLAZY1 in regulating shoot gravitropism and influencing the stem branch angle in tea plants. This report identifies CsLAZY1 as a promising gene resource for the improvement of tea plant architecture.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256599
Author(s):  
Pooja Parishar ◽  
Neha Sehgal ◽  
Soumya Iyengar

The endogenous opioid system is evolutionarily conserved across reptiles, birds and mammals and is known to modulate varied brain functions such as learning, memory, cognition and reward. To date, most of the behavioral and anatomical studies in songbirds have mainly focused on μ-opioid receptors (ORs). Expression patterns of δ-ORs in zebra finches, a well-studied species of songbird have not yet been reported, possibly due to the high sequence similarity amongst different opioid receptors. In the present study, a specific riboprobe against the δ-OR mRNA was used to perform fluorescence in situ hybridization (FISH) on sections from the male zebra finch brain. We found that δ-OR mRNA was expressed in different parts of the pallium, basal ganglia, cerebellum and the hippocampus. Amongst the song control and auditory nuclei, HVC (abbreviation used as a formal name) and NIf (nucleus interfacialis nidopallii) strongly express δ-OR mRNA and stand out from the surrounding nidopallium. Whereas the expression of δ-OR mRNA is moderate in LMAN (lateral magnocellular nucleus of the anterior nidopallium), it is low in the MSt (medial striatum), Area X, DLM (dorsolateral nucleus of the medial thalamus), RA (robust nucleus of the arcopallium) of the song control circuit and Field L, Ov (nucleus ovoidalis) and MLd (nucleus mesencephalicus lateralis, pars dorsalis) of the auditory pathway. Our results suggest that δ-ORs may be involved in modulating singing, song learning as well as spatial learning in zebra finches.


2015 ◽  
Vol 10 (5) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Wei-Wei Deng ◽  
Min Li ◽  
Chen-Chen Gu ◽  
Da-Xiang Li ◽  
Lin-Long Ma ◽  
...  

Caffeine, a purine alkaloid, is a major secondary metabolite in tea leaves. The demand for low caffeine tea is increasing in recent years, especially for health reasons. We report a novel grafted tea material with low caffeine content. The grafted tea plant had Camellia sinensis as scions and C. oleifera as stocks. The content of purine alkaloids was determined in the leaves of one-year-old grafted tea plants by HPLC. We also characterized caffeine synthase (CS), a key enzyme involved in caffeine biosynthesis in tea plants, at the expression level. The expression patterns of CS were examined in grafted and control leaves by Western blot, using a self-prepared polyclonal antibody with high specificity and sensitivity. The expression of related genes ( TCS1, tea caffeine synthase gene, GenBank accession No. AB031280; sAMS, SAM synthetase gene, AJ277206; TIDH, IMP dehydrogenase gene, EU106658) in the caffeine biosynthetic pathway was investigated by qRT-PCR. HPLC showed that the caffeine content was only 38% as compared with the non-grafted tea leaves. Immunoblotting analysis showed that CS protein decreased by half in the leaves of grafted tea plants. qRT-PCR revealed no significant changes in the expression of two genes in the upstream pathway ( sAMS and TIDH), while the expression of TCS1 was greatly decreased (50%). Taken together, these data revealed that the low caffeine content in the grafted tea leaves is due to low TCS1 expression and CS protein accumulation.


2020 ◽  
Vol 21 (19) ◽  
pp. 7043
Author(s):  
Wei Huang ◽  
Dan-Ni Ma ◽  
Hong-Ling Liu ◽  
Jie Luo ◽  
Pu Wang ◽  
...  

Nitrogen (N) is a macroelement with an indispensable role in the growth and development of plants, and tea plant (Camellia sinensis) is an evergreen perennial woody species with young shoots for harvest. During senescence or upon N stress, autophagy has been shown to be induced in leaves, involving a variety of autophagy-related genes (ATGs), which have not been characterized in tea plant yet. In this study, a genome-wide survey in tea plant genome identified a total of 80 Camellia Sinensis autophagy-related genes, CsATGs. The expression of CsATG8s in the tea plant showed an obvious increase from S1 (stage 1) to S4 (stage 4), especially for CsATG8e. The expression levels of AtATGs (Arabidopsis thaliana) and genes involved in N transport and assimilation were greatly improved in CsATG8e-overexpressed Arabidopsis. Compared with wild type, the overexpression plants showed earlier bolting, an increase in amino N content, as well as a decrease in biomass and the levels of N, phosphorus and potassium. However, the N level was found significantly higher in APER (aerial part excluding rosette) in the overexpression plants relative to wild type. All these results demonstrated a convincing function of CsATG8e in N remobilization and plant development, indicating CsATG8e as a potential gene for modifying plant nutrient utilization.


2014 ◽  
Vol 14 (1) ◽  
Author(s):  
Yun-Sheng Wang ◽  
Yu-Jiao Xu ◽  
Li-Ping Gao ◽  
Oliver Yu ◽  
Xin-Zhen Wang ◽  
...  

2019 ◽  
Author(s):  
Shengrui Liu ◽  
Yanlin An ◽  
Wei Tong ◽  
Xiuju Qin ◽  
Lidia Samarina ◽  
...  

Abstract Single nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) are the major genetic variations and are distributed extensively across the whole plant genome. However, few studies of these variations have been conducted in the long-lived perennial tea plant. In this study, we investigated the genome-wide genetic variation between Camellia sinensis var. sinensis ‘Shuchazao’ and Camellia sinensis var. assamica ‘Yunkang 10’, identified 7,511,731 SNPs and 255,218 InDels based on their whole genome sequences, and we subsequently analyzed their distinct types and distribution patterns. A total of 48 InDel markers that yielded polymorphic and unambiguous fragments were developed when screening six tea cultivars. These markers were further deployed on forty-six tea cultivars for transferability and genetic diversity analysis, exhibiting information with an average 4.02 of the number of alleles (Na) and 0.457 of polymorphism information content (PIC). The dendrogram showed that the phylogenetic relationships among these tea cultivars are highly consistent with their genetic backgrounds or original places. Interestingly, we observed that the catechin/caffeine contents between ‘Shuchazao’ and ‘Yunkang 10’ were significantly different, and a large number of SNPs/InDels were identified within catechin/caffeine biosynthesis-related genes. The identified genome-wide genetic variation and newly-developed InDel markers will provide a valuable resource for tea plant genetic and genomic studies, especially the SNPs/InDels within catechin/caffeine biosynthesis-related genes, which may serve as pivotal candidates for elucidating the molecular mechanism governing catechin/caffeine biosynthesis.


2020 ◽  
Vol 21 (7) ◽  
pp. 2433 ◽  
Author(s):  
Jiazhi Shen ◽  
Zhongwei Zou ◽  
Hongqing Xing ◽  
Yu Duan ◽  
Xujun Zhu ◽  
...  

JAZ (Jasmonate ZIM-domain) proteins play pervasive roles in plant development and defense reaction. However, limited information is known about the JAZ family in Camellia sinensis. In this study, 12 non-redundant JAZ genes were identified from the tea plant genome database. Phylogenetic analysis showed that the 12 JAZ proteins belong to three groups. The cis-elements in promoters of CsJAZ genes and CsJAZ proteins interaction networks were also analyzed. Quantitative RT–PCR analysis showed that 7 CsJAZ genes were preferentially expressed in roots. Furthermore, the CsJAZ expressions were differentially induced by cold, heat, polyethylene glycol (PEG), methyl jasmonate (MeJA), and gibberellin (GA) stimuli. The Pearson correlations analysis based on expression levels showed that the CsJAZ gene pairs were differentially expressed under different stresses, indicating that CsJAZs might exhibit synergistic effects in response to various stresses. Subcellular localization assay demonstrated that CsJAZ3, CsJAZ10, and CsJAZ11 fused proteins were localized in the cell nucleus. Additionally, the overexpression of CsJAZ3, CsJAZ10, and CsJAZ11 in E. coli enhanced the growth of recombinant cells under abiotic stresses. In summary, this study will facilitate the understanding of the CsJAZ family in Camellia sinensis and provide new insights into the molecular mechanism of tea plant response to abiotic stresses and hormonal stimuli.


2013 ◽  
Vol 453 (2) ◽  
pp. 271-279 ◽  
Author(s):  
Ganesh Shankarling ◽  
Kristen W. Lynch

Understanding functional distinctions between related splicing regulatory proteins is critical to deciphering tissue-specific control of alternative splicing. The hnRNP (heterogeneous nuclear ribonucleoprotein) L and hnRNP LL (hnRNP L-like) proteins are paralogues that have overlapping, but distinct, expression patterns and functional consequences. These two proteins share high sequence similarity in their RRMs (RNA-recognition motifs), but diverge in regions outside of the RRMs. In the present study, we use an MS2-tethering assay to delineate the minimal domains of hnRNP L and hnRNP LL which are required for repressing exon inclusion. We demonstrate that for both proteins, regions outside the RRMs, the N-terminal region, and a linker sequence between RRMs 2 and 3, are necessary for exon repression, but are only sufficient for repression in the case of hnRNP LL. In addition, both proteins require at least one RRM for maximal repression. Notably, we demonstrate that the region encompassing RRMs 1 and 2 of hnRNP LL imparts a second silencing activity not observed for hnRNP L. This additional functional component of hnRNP LL is consistent with the fact that the full-length hnRNP LL has a greater silencing activity than hnRNP L. Thus the results of the present study provide important insight into the functional and mechanistic variations that can exist between two highly related hnRNP proteins.


Genetics ◽  
1996 ◽  
Vol 144 (1) ◽  
pp. 147-157 ◽  
Author(s):  
Xiaoqing Yuan ◽  
Mary Miller ◽  
John M Belote

Abstract Using the previously cloned proteasome α-type subunit gene Pros28.1, we screened a Drosophila melanogaster genomic library using reduced stringency conditions to identify closely related genes. Two new genes, Pros28.1A (map position 92F) and Pros28.IB (map position 60D7), showing high sequence similarity to Pros28.1, were identified and characterized. Pros28.1A encodes a protein with 74% amino acid identity to PROS28.1, while the Pros28.1B gene product is 58% identical. The Pros28.1B gene has two introns, located in exactly analogous positions as the two introns in Pros28.1, while the Pros28.IA gene lacks introns. Northern blot analysis reveals that the two new genes are expressed only in males, during the pupal and adult stages. Tissue-specific patterns of expression were examined using transgenic flies carrying Zacz-fusion reporter genes. This analysis revealed that both genes are expressed in germline cells during spermatogenesis, although their expression patterns differed. Pros28.1A expression is first detected at the primary spermatocyte stage and persists into the spermatid elongation phase of spermiogenesis, while Pros28. IB expression is prominent only during spermatid elongation. These genes represent the most striking example of cell-type-specific proteasome gene expression reported to date in any system and support the notion that there is structural and functional heterogeneity among proteasomes in metazoans.


2014 ◽  
Vol 139 (5) ◽  
pp. 529-536
Author(s):  
Huai-Fu Fan ◽  
Wen Chen ◽  
Zhou Yu ◽  
Chang-Xia Du

Salt stress reduces the fresh weight, dry weight, and relative growth rate of cucumber (Cucumis sativus) seedlings and results in serious quality loss in cucumber production. Our previous study indicated that the netting-associated peroxidase (CsaNAPOD) protein in cucumber seedling roots was induced by salt stress. Here, we amplified the coding sequence of CsaNAPOD from a cDNA isolated from the roots of cucumber seedlings. Sequence analysis indicated that the coding sequence of CsaNAPOD is 1035 bp, encoding a deduced protein of 344 amino acids, with a predicated molecular weight of 37.2 kD and theoretical isoelectric point of 5.64. The deduced amino acid sequence of CsaNAPOD showed high sequence similarity to peroxidases (PODs) from other plant species. Moreover, CsaNAPOD possesses the typical sequence structures of class III PODs and indicated that CsaNAPOD belongs to this subfamily. CsaNAPOD was highly expressed in the roots and was weakly expressed in the stems and leaves of cucumber seedlings. Salt stress significantly increased the expression of CsaNAPOD in the leaves during the entire experimental period compared with the control, and the expression of CsaNAPOD in roots was reduced at 6 hours and induced at 48 and 72 hours by salt treatment. In stems, the expression of CsaNAPOD declined at 48 and 72 hours as a result of the salt treatment compared with the control. These results indicate that the expression of CsaNAPOD responded to salt stress in cucumber seedlings, and the expression patterns under salt stress in different tissues were not identical. Our research suggests that CsaNAPOD may have potential function during the plant response to salt stress.


Sign in / Sign up

Export Citation Format

Share Document