scholarly journals Mathematical Modelling of Power Skiving for General Profile based on Numerical Enveloping

Author(s):  
Kang Jia ◽  
Junkang Guo ◽  
Tao Ma ◽  
Shaoke Wan

Abstract Power skiving is an effective generating machining method for internal parts like gears with respect its high productivity. The general mathematic modelling for power skiving is the basis for cutting tools design, machining precision evaluation, and machining process optimization. Currently, mainly studies are focus on the involute gear machining with adopting the analytical enveloping equation. However, these analytical methods have failed to deal with overcutting for general profile skiving tasks. Moreover, little attention has been devoted to investigate the power skiving process with taking variable configuration parameters, which is significant to control the machined surface topography. Herein, we introduce a mathematic modelling method for power skiving with general profile based on the numerical discrete enveloping. Firstly, the basic mathematic model of power skiving is established, in which the center distance is formulated as polynomial of time. With transforming the power skiving into a forming machining of the swept volume of cutting edge, a numerical algorithm is designed to distinguish the machined transverse profile via the discrete enveloping ideology. Especially, the precise instant contact curve is extracted according to the feed motion speed inversely. Finally, simulations for involute gear and cycloid wheel are carried out to verify the effectiveness of this method and investigate the influence of variable radial motions on the machined slot surface topography. The results show this method is capable to simulate the dynamic power skiving process with general profiles and to evaluate the machined results.

2012 ◽  
Vol 497 ◽  
pp. 10-14
Author(s):  
Tie Jun Song ◽  
Zhi Xiong Zhou ◽  
Wei Li ◽  
Ai Min Tang

Cup wheel grinding and etching pretreatment are widely used in complex coated cemented carbide cutting tools machining process. The two processes determine different surface properties due to various mechanical and thermal loads in grinding and complex chemical reaction in etching pretreatment. In this paper, the effect of the grinding wheel speed, the grinding feed rate and the etching time with the Murakami and acid solution on the residual stress and surface topography of coated cemented carbide cutting tools are investigated. After each process, the samples are characterized by scanning electron microscopy and X-ray diffraction. It is found that the grinding wheel speed has a significant influence on residual stress measured in the WC phase. Etching by Murakami generated smooth surface, which partly removed the near-surface residual stress quickly but cannot eliminate.


2011 ◽  
Vol 672 ◽  
pp. 319-322 ◽  
Author(s):  
Mustafa Günay ◽  
Ulvi Şeker

MMCs components are mostly produced using near net shape manufacturing methods and are subsequently machined to the final dimensions and surface finishes. The MMCs consist of extremely hard reinforcing particles and pose considerable challenges due to the poor machinability and severe wear of the cutting tool. In this study, cutting performance of WC, CBN and PCD cutting tools were investigated with respect to surface roughness during machining of 10 wt % SiCp reinforced Al-Si alloy matrix composites produced by powder metallurgy (PM) method. Average surface roughness (Ra) corresponding to each machining condition was measured. After the machining process the worn insert tips were examined under the scanning electron microscope (SEM). Chip geometry and machined surface photographs have been taken by optical microscopy. The experimental results showed that surface roughness decreased with increasing cutting speed for all of cutting tool materials. The best surface integrity was occurred after the machining with PCD insert at the highest cutting speed employed.


2021 ◽  
Vol 5 (3) ◽  
pp. 100
Author(s):  
Dongdong Xu ◽  
Liang Ding ◽  
Yang Liu ◽  
Jinming Zhou ◽  
Zhirong Liao

It is essential for superalloys (e.g., Inconel 718) to obtain an anticipated surface integrity after machining, especially for safety critical areas (e.g., aerospace). As one of the main characteristics for cutting tools, the rake angle has been recognized as a key factor that can significantly influence the machining process. Although there are large research interests and outcomes in the machining of nickel-based superalloys, most of them focus on the surface integrity and macroscale temperature observation, whereas the temperature distribution in the tool rake face is not clear. Thus, it is necessary to investigate the basic role of rake angles and the tool–workpiece interaction mechanism to determine the machining condition variations and surface integrity. In the present study, both experimental and numerical methods are employed to explore the cutting force, thermal distribution, and shear angles during the process and the metallurgy characteristics of the subsurface after machining, as well as the mechanical properties. The research has emphasized the importance of rake angles on both the cutting process and machined surface integrity, and has revealed the microscale temperature distribution in the tool rake face, which is believed to have a close relationship with the tool crater wear. In addition, it is clearly presented that the surface generated with positive rake angle tools generates the minimum subsurface deformation and less strain hardening on the workpiece.


2009 ◽  
Vol 3 (4) ◽  
pp. 377-377
Author(s):  
Atsushi Matsubara ◽  

Manufacturing fields in high-income countries have tended to pursue high quality and high productivity together. In conventional machining, however, machine tools, cutting tools, machining process, and measurement technologies have progressed individually rather than together -- mainly due to the production industry configuration. With society’s needs growing and diversifying, however, development approach that combines distinct technologies without integration no long ensures competitiveness. In a world where knowledge and ideas regarded as know-how and used implicitly, knowledge and ideas should be integrated into explicit software with adequate hardware. The important issues are as follows:<br /> (1)Process monitoring technology providing sufficient information for systems to make decisions based on economical investment<br /> (2)Process control technology based on a deeper understanding of processes themselves and of the nature of control<br /> (3)Motion control technology for precise, high-speed, versatile movement in support process control This special issue provides the latest topics related to these issues, and we are sure readers will enjoy reading about and sharing ideas toward a new machine tools and manufacturing technology paradigm. We thank the authors for their contributions to this special issue and the reviewers and editors for their ongoing efforts.


Author(s):  
Shun Liu ◽  
Sun Jin ◽  
Xueping Zhang ◽  
Lixin Wang ◽  
Benfu Mei ◽  
...  

Adhesive is widely used in engine, airplane and other industry parts to bond and seal machined joint surfaces. Adhesive performance is important and mechanically complex, closely related to the adhesive material property, bonding process and topography of machined surfaces. The effects of material properties, bonding process, and the geometry and dimensions of adhesive layer on adhesive performance have been well studied in adhesive research field. However, the effect of the topography of machined surface on sealing performance was somehow neglected in literature. On the other hand, the texture of machined surface, especially at micro-level of surface roughness, usually used as the objective to determine process parameters in machining and also regarded as indicators of machining productivity, has been systemically and sufficiently studied. However sealing performance has not been widely investigated to relate to topography of machined surface generated from machining operation. Actually, the surface topography plays an important role in the both fields as an index for machining process and also a factor for functional performance. Desired surface should be determined firstly and then machining parameters are designed properly to achieve the desired surface, in order to improve the functional behavior such as the applied adhesive sealing performance of machined components. This research has objectives: 1) the desired surface topography is determined based on the relationship between machining operation and surface texture; 2) The effects of machined surface topography on the reliability of adhesive joint surfaces are analytically investigated. Thus, the research provides a systematic thinking for the selection of surface topography and parameters of face milling operation to improve the performance of adhesive bonding and sealing for its industry implementation.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1286
Author(s):  
Masud Alam ◽  
Liang Zhao ◽  
Napat Vajragupta ◽  
Junjie Zhang ◽  
Alexander Hartmaier

Machining of brittle ceramics is a challenging task because the requirements on the cutting tools are extremely high and the quality of the machined surface strongly depends on the chosen process parameters. Typically, the efficiency of a machining process increases with the depth of cut or the feed rate of the tool. However, for brittle ceramics, this easily results in very rough surfaces or even in crack formation. The transition from a smooth surface obtained for small depths of cut to a rough surface for larger depths of cut is called a brittle-to-ductile transition in machining. In this work, we investigate the mechanisms of this brittle-to-ductile transition for diamond cutting of an intrinsically brittle 3C-SiC ceramic with finite element modeling. The Drucker–Prager model has been used to describe plastic deformation of the material and the material parameters have been determined by an inverse method to match the deformation behavior of the material under nanoindentation, which is a similar loading state as the one occurring during cutting. Furthermore, a damage model has been introduced to describe material separation during the machining process and also crack initiation in subsurface regions. With this model, grooving simulations of 3C-SiC with a diamond tool have been performed and the deformation and damage mechanisms have been analyzed. Our results reveal a distinct transition between ductile and brittle cutting modes as a function of the depth of cut. The critical depth of cut for this transition is found to be independent of rake angle; however, the surface roughness strongly depends on the rake angle of the tool.


2018 ◽  
Vol 765 ◽  
pp. 227-231
Author(s):  
Ushasta Aich ◽  
Simul Banerjee

Machined surface carries the inherent features of machining process. Investigation of surface topography generated by machining process is helpful to extract the features of surface development process. In the present study, roughness profiles measured on machined surface generated by EDM are considered as time series and used for extraction of inherent features of surface topography through phase space reconstruction. Presence of self-similarity in surface topography is assessed by estimating a second order fractal dimension, called as correlation dimension. Saturation of correlation exponents with the increase of embedding dimension indicates the presence of chaos in surface topography.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3432
Author(s):  
Edwin Gevorkyan ◽  
Mirosław Rucki ◽  
Tadeusz Sałaciński ◽  
Zbigniew Siemiątkowski ◽  
Volodymyr Nerubatskyi ◽  
...  

The paper presents results of investigations on the binderless nanostructured tungsten carbide (WC) cutting tools fabrication and performance. The scientific novelty includes the description of some regularities of the powder consolidation under electric current and the subsequent possibility to utilize them for practical use in the fabrication of cutting tools. The sintering process of WC nanopowder was performed with the electroconsolidation method, which is a modification of spark plasma sintering (SPS). Its advantages include low temperatures and short sintering time which allows retaining nanosize grains of ca. 70 nm, close to the original particle size of the starting powder. In respect to the application of the cutting tools, pure WC nanostructure resulted in a smaller cutting edge radius providing a higher quality of TiC/Fe machined surface. In the range of cutting speeds, vc = 15–40 m/min the durability of the inserts was 75% of that achieved by cubic boron nitride ones, and more than two times better than that of WC-Co cutting tools. In additional tests of machining 13CrMo4 material at an elevated cutting speed of vc = 100 m/min, binderless nWC inserts worked almost three times longer than WC-Co composites.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 854
Author(s):  
Muhammad Aamir ◽  
Khaled Giasin ◽  
Majid Tolouei-Rad ◽  
Israr Ud Din ◽  
Muhammad Imran Hanif ◽  
...  

Drilling is an important machining process in various manufacturing industries. High-quality holes are possible with the proper selection of tools and cutting parameters. This study investigates the effect of spindle speed, feed rate, and drill diameter on the generated thrust force, the formation of chips, post-machining tool condition, and hole quality. The hole surface defects and the top and bottom edge conditions were also investigated using scan electron microscopy. The drilling tests were carried out on AA2024-T3 alloy under a dry drilling environment using 6 and 10 mm uncoated carbide tools. Analysis of Variance was employed to further evaluate the influence of the input parameters on the analysed outputs. The results show that the thrust force was highly influenced by feed rate and drill size. The high spindle speed resulted in higher surface roughness, while the increase in the feed rate produced more burrs around the edges of the holes. Additionally, the burrs formed at the exit side of holes were larger than those formed at the entry side. The high drill size resulted in greater chip thickness and an increased built-up edge on the cutting tools.


Sign in / Sign up

Export Citation Format

Share Document