scholarly journals The experimental verification of how light spreads at large distances - A missing experiment at foundation

Author(s):  
Corneliu I. Costescu ◽  
Ruxandra M. Costescu ◽  
Doina M. Costescu

Abstract We recognize that the spreading of light at large distances (the whole space) is the only property which can decide by yes or no if light really behaves physically like waves, while the fit of the waves for describing the diffraction fringes is insufficient for this purpose. Indeed, the fringe space is too limited and hence, brings the possibility of misinterpretation. Hence, the experiment for the verification if light is spreading like waves at large distances is necessary in principle, and is crucial. However, very surprisingly and tragically, this experiment was totally missing in history. This experiment uses the simplest diffraction case, in which a beam of light falls perpendicularly with its axis on the line and the plane of a straight edge. Practically, this experiment verifies if there is a dependence of the diffracted light at large distances in the geometrical shadow on the changes in beam thickness traversal to a single straight edge, while the distribution of light along the straight edge remains the same. If this dependence exists, as the wave theory for light fundamentally predicts, then the wave approach to light is physically true. If there is no dependence then light cannot behave physically like waves. This experiment can clearly be developed and performed without any calculation from the wave approach, just by a careful measurement practice. However, for a broader view, we describe in detail wave results for spreading of light at large distance, which illustrate the experiment – what are the spatial points where the measurement must be done to see if the above dependence exists, and which is the big picture for the wave approach. We attempted this experiment for many years, but could not finish it because of the lack of resources to measure at 100–500 m. The present article will empower big labs to perform this experiment. However, we show alternatively that the answer to how light spreads also comes from comparing the well known data for the diffraction on macroscopic holes with relatively recent data for the diffraction on nanoscopic holes. This comparison clearly shows that light does not spread physically like waves, which makes necessary a new, non-wave but periodic structure for light. Such an alternative answer regarding the spreading of light also makes absolutely necessary to perform the above missing experiment, as a direct way that convinces anybody how light is spreading.

1957 ◽  
Vol 1 (02) ◽  
pp. 27-55
Author(s):  
John P. Breslin

It is demonstrated in this paper2 that the deepwater wave drag of a hydrofoil of finite span can be found directly from the theory developed largely for ship hydrodynamics by Havelock and others. The wave drag is then studied at high Froude numbers and from the observed behavior the induced drag of the hydrofoil can be deduced from existing aerodynamic formulas. Evaluation of the resulting formulas is effected for two arbitrary load distributions and a comparison with some model test results is made. A practical approximation which gives the influence of gravity over a range of high Froude numbers is found and from this one can deduce a Froude number beyond which the effects of gravity may be ignored. It is also shown that an expression for the waves at some distance aft of the hydrofoil can be deduced from the general formulas developed for ship hydrodynamics. A discussion of the wave pattern is given with particular emphasis on the centerline profile at high Froude numbers and a contrast is pointed out in regard to the results of the two-dimensional theory for the hydrofoil waves and wave resistance.


In this paper and in part II, we give the theory of a distinctive type of wave motion, which arises in any one-dimensional flow problem when there is an approximate functional relation at each point between the flow q (quantity passing a given point in unit time) and concentration k (quantity per unit distance). The wave property then follows directly from the equation of continuity satisfied by q and k . In view of this, these waves are described as ‘kinematic’, as distinct from the classical wave motions, which depend also on Newton’s second law of motion and are therefore called ‘dynamic’. Kinematic waves travel with the velocity dq/dk , and the flow q remains constant on each kinematic wave. Since the velocity of propagation of each wave depends upon the value of q carried by it, successive waves may coalesce to form ‘kinematic shock waves ’. From the point of view of kinematic wave theory, there is a discontinuous increase in q at a shock, but in reality a shock wave is a relatively narrow region in which (owing to the rapid increase of q ) terms neglected by the flow concentration relation become important. The general properties of kinematic waves and shock waves are discussed in detail in §1. One example included in §1 is the interpretation of the group-velocity phenomenon in a dispersive medium as a particular case of the kinematic wave phenomenon. The remainder of part I is devoted to a detailed treatment of flood movement in long rivers, a problem in which kinematic waves play the leading role although dynamic waves (in this case, the long gravity waves) also appear. First (§2), we consider the variety of factors which can influence the approximate flow-concentration relation, and survey the various formulae which have been used in attempts to describe it. Then follows a more mathematical section (§3) in which the role of the dynamic waves is clarified. From the full equations of motion for an idealized problem it is shown that at the ‘Froude numbers’ appropriate to flood waves, the dynamic waves are rapidly attenuated and the main disturbance is carried downstream by the kinematic waves; some account is then given of the behaviour of the flow at higher Froude numbers. Also in §3, the full equations of motion are used to investigate the structure of the kinematic shock; for this problem, the shock is the ‘monoclinal flood wave’ which is well known in the literature of this subject. The final sections (§§4 and 5) contain the application of the theory of kinematic waves to the determination of flood movement. In §4 it is shown how the waves (including shock waves) travelling downstream from an observation point may be deduced from a knowledge of the variation with time of the flow at the observation point; this section then concludes with a brief account of the effect on the waves of tributaries and run-off. In §5, the modifications (similar to diffusion effects) which arise due to the slight dependence of the flow-concentration curve on the rate of change of flow or concentration, are described and methods for their inclusion in the theory are given.


Kelvin’s classical ship-wave theory (Thomson 1891) gives an asymptotic form for the waves generated by a pressure point moving over a water surface. This paper presents a method of working out the asymptotic expansions which is simpler than those of the various previous theories, although it does not give new or more accurate results. The technique used is due to Lighthill (1958, 1960). The case in which the water has infinite depth is considered in detail, and corresponding results when the depth is finite are deduced. A final section considers the effect of surface tension.


1968 ◽  
Vol 1 (11) ◽  
pp. 39 ◽  
Author(s):  
Taizo Hayashi ◽  
Masataro Hattori ◽  
Masujiro Shirai

The theory for the transmission and reflection of the waves at the closely spaced pile breakwater has been developed by the use of shallow water wave theory of small amplitude. Experiment on the hydraulic characteristics of the breakwater has been performed in a two dimensional wave flume. The agreement between the theory and the experiment is pretty good with respect to the coefficients of transmission and reflection of waves, and also to the shoreward velocity of the jet discharged from a space between any two adjacent piles. Experiment was also made on the local scouring at the foot of the clocely spaced pile breakwater. The maximrai scouring depth at the foot of the breakwater relates closely to the ratio of the velocity of the jet to the mean fall velocity of bed material. The relation between the maximum scouring depth and the power of the jet is discussed.


Author(s):  
Hans G. Schantz

Conventional definitions of ‘near fields’ set bounds that describe where near fields may be found. These definitions tell us nothing about what near fields are, why they exist or how they work. In 1893, Heaviside derived the electromagnetic energy velocity for plane waves. Subsequent work demonstrated that although energy moves in synchronicity with radiated electromagnetic fields at the speed of light, in reactive fields the energy velocity slows down, converging to zero in the case of static fields. Combining Heaviside's energy velocity relation with the field Lagrangian yields a simple parametrization for the reactivity of electromagnetic fields that provides profound insights to the behaviour of electromagnetic systems. Fields guide energy. As waves interfere, they guide energy along paths that may be substantially different from the trajectories of the waves themselves. The results of this paper not only resolve the long-standing paradox of runaway acceleration from radiation reaction, but also make clear that pilot wave theory is the natural and logical consequence of the need for quantum mechanics correspond to the macroscopic results of the classical electromagnetic theory. This article is part of the theme issue ‘Celebrating 125 years of Oliver Heaviside's ‘Electromagnetic Theory’’.


1993 ◽  
Vol 115 (4) ◽  
pp. 384-390 ◽  
Author(s):  
A. D. Pierce

A generalization of the Donnell model for a thin shell of arbitrary shape, and with position-dependent elastic and geometric properties, is used to formulate a wave theory for quasi-straight-crested waves of constant frequency propagating over the shell’s surface. The principal restriction on the theory is that the wavenumber components must be large compared with the two principal curvatures. A simple method for including fluid loading in the model yields a finite local specific radiation impedance even when the waves on the surface are moving with the fluid’s sound speed. The overall model is then used to derive a general dispersion relation which connects frequency and wavenumber components for the fundamental waves of the fluid-shell system.


Author(s):  
Denys Proshyn

David Rapoport’s Wave theory of terrorism is one of the most oftencited theories in the literature on terrorist violence. Rapoport is praised for having provided researchers with a universal instrument which allows them to explain the origin and transformation of various historical types of terrorism by applying to them the concept of global waves of terrorist violence driven by universal political impulses. This article, testing the Wave theory against the recent phenomenon of homegrown jihadism in Europe, uncovers this theory’s fundamental weaknesses and questions its real academic and practical value.


1986 ◽  
Vol 1 (20) ◽  
pp. 116 ◽  
Author(s):  
I.A. Svendsen ◽  
J. Buhr Hansen

A two-dimensional model for waves and steady currents in the surf zone is developed. It is based on a depth integrated and time averaged version of the equations for the conservation of mass, momentum, and wave energy. A numerical solution is described based on a fourth order Runge-Kutta method. The solution yields the variation of wave height, set-up, and current in the surf zone, taking into account the mass flux in the waves. In its general form any wave theory can be used for the wave properties. Specific results are given using the description for surf zone waves suggested by Svendsen (1984a), and in this form the model is used for the wave motion with a current on a beach with a longshore bar. Results for wave height and set-up are compared with measurements by Hansen & Svendsen (1986).


1982 ◽  
Vol 1 (18) ◽  
pp. 56
Author(s):  
G.P. Bleach

A comparison is made between two reference frames that can each be used to define "still water" for finite amplitude waves on water of finite depth. The reference frame characterized by zero mass flux due to the waves is used to find some exact relations between the wave integral properties. The averaged Lagranian (wave action) approach and the energy/momentum approach to the interaction of finite amplitude waves with slowly-varying currents are also derived in this reference frame. Results in many cases are simpler than those in the more commonly chosen reference frame characterized by zero mean horizontal velocity under the waves. An application of the integral properties is made to Vocoidal wave theory, which is defined in the zero mass flux frame. It is shown that the rotation present in the orbital velocity field of Vocoidal waves is not always negligible.


Author(s):  
Andrij Andrukhiv ◽  
◽  
Bohdan Sokil ◽  
Mariia Sokil ◽  
◽  
...  

The methodology of the studying of dynamic processes in two-dimensional systems by mathematical models containing nonlinear equation of Klein-Gordon was developed. The methodology contains such underlying: the concept of the motion wave theory; the single - frequency fluctuations principle in nonlinear systems; the asymptotic methods of nonlinear mechanics. The aggregate content allowed describing the dynamic process for the undisturbed (linear) analogue of the mathematical model of movement. The value determining the impact of nonlinear forces on the basic parameters of the waves for the disturbed analogue is defined.


Sign in / Sign up

Export Citation Format

Share Document