scholarly journals Cryopreservation of Iranian Markhoz Goat Fibroblast Cells as an Endangered National Genetic Resource

Author(s):  
Zahra Elyasi Gorji ◽  
Parvaneh Farzaneh ◽  
Ahmad Nasimian ◽  
Meysam Ganjibakhsh ◽  
Mehrnaz Izadpanah ◽  
...  

Abstract The sustainable use of local animals is being eroded annually. Thus, a strategic vision for the conservation of biodiversity is of far-reaching emphasis to deal with unprecedented challenges in the local population growth process facing in the future. This study aimed to establish, characterize and cryopreserve endangered Markhoz goat (Capra hircus) fibroblast cell lines in vitro. These primary fibroblast cells were isolated from 58 Iranian Markhoz goats and individually cultured by explant technique in DMEM media supplemented with 10 % FBS. The cultured cell lines were morphologically consistent with fibroblast cells. The population doubling time for DMEM-cultured cells were 23±0.5 h. Chromosomal analysis indicated a total chromosome number of 2n = 60 with >95% frequency. Experimental assays for bacteria, fungi, yeast, and mycoplasma were reported negative. The efficiencies of VSV-G (pMDG) and lentiviral pCSGW vectors encoding fluorescent proteins showed an approximate value of 65%. Species identification for each sample was performed and confirmed correct goat cell banking without any miss- and cross-contamination. This study demonstrated the successful establishment of genetically stable fibroblast bank as a valuable genetic resource for endangered Iranian Markhoz goat breed.

2005 ◽  
Vol 17 (2) ◽  
pp. 167 ◽  
Author(s):  
A.M. Giraldo ◽  
J.W. Lynn ◽  
C.E. Pope ◽  
R.A. Godke ◽  
K.R. Bondioli

The low efficiency of nuclear transfer (NT) has been related to factors such as mitochondria heteroplasmy, failure of genomic activation, and asynchrony between the donor karyoplast and recipient cytoplast. Few studies have characterized donor cell lines in terms of proliferative capacity and chromosomal stability. It is known that suboptimal culture conditions can induce chromosomal abnormalities, and the use of aneuploid donor cells during NT can lead to a high incidence of abnormal cloned embryos (Giraldo et al. 2004 Reprod. Fertil. Dev. 16, 124 abst). The purpose of this study was to determine the lifespan and chromosomal stability of bovine and porcine fetal cells. Four bovine and four porcine fibroblast cells lines were established from 50-day and 40-day fetuses, respectively. Cells were cultured in DMEM medium supplemented with 10% fetal bovine serum and 1% penicillin and streptomycin at 37°C in 5% CO2. Each cell line was passaged to senescence. Total population doublings (PDs) and cell cycle duration were calculated. To determine the chromosome numbers at different PDs, cells were synchronized in metaphase, fixed, and stained. ANOVA and chi-square tests were used to analyze differences in PDs and proportion of aneuploid cells between cell lines, respectively (P < 0.05). The results show that proliferative capacity was not different between cell lines derived from the same species. Cell lines derived from bovine and porcine fetuses had different in vitro lifespans (33 PDs vs. 42 PDs, respectively; P < 0.05). The mean length of the cell cycles for both bovine and porcine fetal fibroblasts was ∼28 h. The percentage of aneupliod cells in both bovine and porcine fetal cell lines increased progressively with duration of culture (see Table) and was high throughout the study. The proliferative capacity of cultured cells was similar within individuals of the same species, but growth characteristics differed between fetal bovine and porcine cell lines. The progressive increase of aneuploid cells could be due to suboptimal culture conditions or unusual chromosome instability in the particular fetuses used. These data demonstrate the importance of determining chromosome content and the use of cells at early passages to decrease the percentage of aneuploid reconstructed embryos and increase the efficiency of NT.


2017 ◽  
Vol 5 (1) ◽  
pp. 62-66
Author(s):  
O. Kalmukova ◽  
A. Ustymenko ◽  
T. Lutsenko ◽  
P. Klymenko ◽  
V. Kyryk

Nail unit is a complex anatomical structure that is capable of rapid growth and regeneration throughout the life. Such significant reparative potential is associated with the presence different types of stem and progenitor cells, whose biology remains one of the fundamental issues today. Taking into account the active search for new stem cell sources for cell therapy, the view of the nail unit as a potential site for the localization of undifferentiated cells with stem potency is topical problem.Purpose. The study was conducted with an objective to establish the morphological, morphometric and proliferative characteristics of cultured cells isolated from the mouse nail unit.Materials and methods. Primary cultures of cells were obtained from tissue sampling, which included areas of the proximal nail fold, nail matrix and onychodermis of the FVB mouse nail organ. Cells were cultured in DMEM:F12 medium with 15 % fetal bovine serum during 6 passages. We determined the colony-forming activity, the population growth rate and doubling time, measured the area of cells, nuclei, and calculated the nuclear-cytoplasmic ratio. For cell morphology analysis, we used staining with Bemer’s hematoxylin and eosin, Heidenhain’s iron hematoxylin and May-Grünwald stain.Results. According to the morphological analysis in vitro the cells from mouse nail unit are heterogeneous with high synthetic activity and a low nuclear-cytoplasmic ratio – the features characteristic of the low-differentiated cells. The population doubling time of the culture was 80 ± 6.5 hours on average, the fastest growing cells were at the 4th passage (63 ± 7 hours). The specific growth rate for cell culture is low (0.01 ± 0.0007).The colony forming efficiency at the 5th passage was only 4 %. A significant number of colonies was small with large poorly proliferative cells, which may indicate a production of large numbers of transitional progenitor cells.Conclusion. The obtained cell culture from the mouse nail unit according to the analysis of their morphology, morphometry and proliferative potential is heterogeneous and requires the further development of pure culture technologies for the detailed characterization of separate subpopulations of cells.


Author(s):  
Zeinab Abedian ◽  
Niloofar Jenabian ◽  
Ali Akbar Moghadamnia ◽  
Ebrahim Zabihi ◽  
Roghayeh Pourbagher ◽  
...  

Objective/ Background: Cancer is still the most common cause of morbidity in world and new powerful anticancer agents without severe side effects from natural sources is important. Methods: The evaluation of cytotoxicity and apoptosis induction was carried out in MCF-7,HeLa and Saos-2 as cancerous cell lines with different histological origin and human fibroblast served as control normal cell. The cells were treated with different concentrations of chitosan and the cytotoxicity was determined using MTT assay after 24, 48 and 72 h .The mode of death was evaluated by flow cytometry . Results: While both types of chitosan showed significant concentration-dependently cytotoxic effects against the three cancerous cell lines, fibroblast cells showed somehow more compatibility with chitosan. On the other hand, there were no significant differences between LMWC and HMWC cytotoxicity in all cell lines. The flow cytometry results showed the apoptosis pattern of death more in Saos-2 and HeLa while necrosis was more observable with MCF7. Also higher viability with both types of chitosan was seen in fibroblast as normal cells Conclusion: Chitosan shows anticancerous effect against 3 cancerous cell lines, while it is compatible with normal diploid fibroblast cells. Furthermore, it seems that the molecular weight of chitosan does not affect its anticancerous property.


2008 ◽  
Vol 18 (2) ◽  
pp. 339-344 ◽  
Author(s):  
H.-J. Schulten ◽  
J. Wolf-Salgó ◽  
C. Gründker ◽  
B. Gunawan ◽  
L. FÜZESI

We describe the newly established cell line CS-99 derived from a uterine carcinosarcoma retaining features of the sarcomatous phenotype in vitro. CS-99 cells exhibit a mesenchymal morphology with predominantly spindle-shaped cells at nonconfluence turning to pleomorphic appearance at confluence. The mesenchymal phenotype was evidenced immunohistochemically by strong vimentin and moderate SM-actin, which was similar to the sarcomatous component of the primary tumor. P53 was overexpressed in a subset of CS-99 cells. Epithelial membrane antigen was moderately expressed whereas other markers including pan CK, CK 5/6, CK 34, epidermal growth factor receptor, desmin, carcinoembryonic antigen, S100, KIT, ERBB2, and the hormone receptors, estrogen receptor and progesterone receptor revealed either weak or no specific staining in CS-99 cells. High self-renewal capacity corresponded to the population doubling time of 23 h in high passage. CS-99 cells were able to develop three-dimensional tumor spheroids in vitro. Cytogenetic analysis and multicolor fluorescence in situ hybridization of CS-99 demonstrated an almost stable karyotype including numerical changes +8, +18, and +20 and translocations, amongst others der(1)t(1;2), der(1)t(1;7), der(2)t(2;19), der(5)t(5;8), and der(5)t(5;14). Taken together, the cell line CS-99 exhibits strong growths dynamics and a complex but stable karyotype in higher passages, and can be further a useful in vitro model system for studying tumor biology of carcinosarcomas.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Gericke ◽  
K. Suminska-Jasińska ◽  
A. Bręborowicz

AbstractChronic exposure of retinal endothelium cells to hyperglycemia is the leading cause of diabetic retinopathy. We evaluated the effect of high glucose concentration on senescence in human retinal endothelial cells (HREC) and modulation of that effect by Sulodexide. Experiments were performed on HREC undergoing in vitro replicative senescence in standard medium or medium supplemented with glucose 20 mmol/L (GLU) or mannitol 20 mnol/L (MAN). Effect of Sulodexide 0.5 LRU/mL (SUL) on the process of HREC senescence was studied. Glucose 20 mmol/L accelerates senescence of HREC: population doubling time (+ 58%, p < 0.001) β-galactosidase activity (+ 60%, p < 0.002) intracellular oxidative stress (+ 65%, p < 0.01), expression of p53 gene (+ 118%, p < 0.001). Senescent HREC had also reduced transendothelial electrical resistance (TEER) (− 30%, p < 0.001). Mannitol 20 mmol/L used in the same scenario as glucose did not induce HREC senescence. In HREC exposed to GLU and SUL, the senescent changes were smaller. HREC, which became senescent in the presence of GLU, demonstrated higher expression of genes regulating the synthesis of Il6 and VEGF-A, which was reflected by increased secretion of these cytokines (IL6 + 125%, p < 0.001 vs control and VEGF-A + 124% p < 0.001 vs control). These effects were smaller in the presence of SUL, and additionally, an increase of TEER in the senescent HREC was observed. Chronic exposure of HREC to high glucose concentration in medium accelerates their senescence, and that process is reduced when the cells are simultaneously exposed to Sulodexide. Additionally, Sulodexide decreases the secretion of IL6 and VEGF-A from senescent HREC and increases their TEER.


2020 ◽  
Author(s):  
Tao Wang ◽  
Zelong Li ◽  
Jinpu Wei ◽  
Dongmin Zheng ◽  
Chen Wang ◽  
...  

AbstractThe population decline in the common hippopotamus (Hippopotamus amphibius) has necessitated the preservation of their genetic resources for species conservation and research. Of all actions, cryopreservation of fibroblast cell cultures derived from animal biopsy is considered a simple but efficient means. Nevertheless, preserving viable cell cultures of the common hippopotamus has not been achieved to our knowledge. To this end, we detailed a method to establish fibroblast cell cultures from a female common hippopotamus fetus in this study. By combining the classic tissue explant direct culture and enzymatic digestion methods, we isolated a great number of cells with typical fibroblastic morphology and high viability. Characterization of the fibroblast cultures was carried out using different techniques. In short, neither bacteria/fungi nor mycoplasma was detectable in the cell cultures throughout the study. The population doubling time was 23.9 h according to the growth curve. Karyotyping based on Giemsa staining showed that cultured cells were diploid with 36 chromosomes in all, one pair of which was sex chromosomes. Mitochondrial cytochrome C oxidase subunit I gene sequence of the cultured cells was 99.26% identical with the Hippopotamus amphibius complete mitochondrial DNA sequence registered in GenBank, confirming the cells were derived from a common hippopotamus. Flow cytometry and immunofluorescence staining results revealed that the detected cells were positive for fibroblast markers, S100A4 and Vimentin. In conclusion, we isolated and characterized a new fibroblast cell culture from a common hippopotamus skin sample and the cryopreserved cells could be useful genetic materials for the future research.


2021 ◽  
Author(s):  
Shiva Pratap Singh ◽  
Suresh Dinkar Kharche ◽  
Manisha Pathak ◽  
Ravi Ranjan ◽  
Yogesh Kumar Soni ◽  
...  

Abstract The milieu of testicular germline stem cells (mGSCs) is characterized as low oxygen (O2) environment, whereas, there in-vitro expansion is typically performed under normoxia (20-21% O2). Here, we evaluated and compared the culture and multilineage differentiation characteristics of enriched (through differential platting and percoll density centrifugation) caprine mGSCs (cmGSCs) under hypoxic (5% O2) and normoxic (21% O2) culture conditions. For this, in addition to growth characteristics and population-doubling time (PDT); viability, proliferation, senescence, and expression of key-markers of adhesion (β-integrin and E-Cadherin) and stemness (OCT-4, THY-1 and UCHL-1) were evaluated and compared under normoxia and hypoxia. Moreover, the extent of multilineage differentiation (neurogenic, adipogenic, and chondrogenic differentiation) was assessed. The survival, viability and proliferation were significantly promoted and PDT was reduced (p < 0.05), thus yielding a higher number of viable cells with larger colonies under hypoxia. Furthermore, expression of stemness and adhesion markers was distinctly increased under lowered O2 condition. Conversely, the presence of differentiated regions and expression of differentiation specific key genes [C/EBPα (adipogenic), nestin and β-tubulin (neurogenic), and COL2A1 (chondrogenic)] were significantly (p < 0.05) reduced under hypoxic conditions. These data demonstrate that culturing cmGSCs under hypoxia augments the growth characteristics, and stemness but not the multilineage differentiation potential of cmGSCs as compared with normoxia. These data are important for the development of robust methodologies for ex-vivo expansion and lineage-committed differentiation of cmGSCs for clinical applications.


2010 ◽  
Vol 93-94 ◽  
pp. 121-124
Author(s):  
Nuttapon Vachiraroj ◽  
Siriporn Damrongsakkul ◽  
Sorada Kanokpanont

In this work, we developed a 3-dimensional bone tissue engineering scaffold from type B gelatin and hydroxyapatite. Two types of scaffolds, pure gelatin (pI~5) (Gel) and gelatin/hydroxyapatite (30/70 wt./wt.) (Gel/HA), were prepared from concentrated solutions (5% wt./wt.) using foaming/freeze drying method. The results SEM revealed the interconnected-homogeneous pores of Gel and Gel/HA were 121  119 and 148  83m, respectively. Hydroxyapatite improved mechanical property of the gelatin scaffolds, especially at dry state. Compressive modulus of Gel and Gel/HA scaffolds were at 118±21.68 and 510±109.08 kPa, respectively. The results on in vitro cells culture showed that Gel/HA scaffolds promoted attachment of rat’s mesenchymal stem cells (MSC) to a 1.23 folds higher than the Gel scaffolds. Population doubling time (PDT) of MSC on Gel and Gel/HA scaffolds were 51.16 and 54.89 hours, respectively. In term of osteogenic differentiation, Gel/HA scaffolds tended to enhance ALP activity and calcium content of MSC better than those of the Gel scaffold. Therefore the Gel/HA scaffolds had a potential to be applied in bone tissue engineering.


Biologia ◽  
2013 ◽  
Vol 68 (4) ◽  
Author(s):  
Ľuboš Danišovič ◽  
Marcela Kuniaková ◽  
Zuzana Varchulová-Nováková ◽  
Martin Boháč ◽  
Ivan Varga ◽  
...  

AbstractAdipose tissue seems to be a rich and safe source of mesenchymal stem cells (MSCs). The present study was aimed to investigate the biological and morphological characteristics of human adipose tissue-derived stem cells (ATSCs). Light and transmission electron microscopy were used. Course of proliferation was analyzed by growth curve. Expression of surface antigens was assessed by flow cytometry. Chondrogenic potential was assessed by immunohistochemistry. Obtained results showed morphology typical of fibroblastoid cells. TEM analysis proved ultrastructural morphology similar to MSCs from other sources. ATSCs reflected their proteosynthetic and metabolic activity. Each cell had irregular shape of nucleus with noticeable nucleoli. Abundant cisterns of rough endoplasmic reticulum were present in their cytoplasm. Karyotype mapping showed normal count of human chromosomes (46,XX). The growth curve revealed high capability for proliferation and population doubling time was 27.36 hours. ATSCs were positive for CD13, CD29, CD44, CD73, CD90, CD105 and CD106, but did not express CD14, CD34, CD45 and HLA-DR. It was also proved that ATSCs underwent chondrogenic differentiation in vitro. On the basis of obtained results it should be emphasized that ATSCs are typical MSCs and after further investigations they may be used in tissue engineering and regenerative medicine.


2018 ◽  
Vol 205 (4) ◽  
pp. 226-239 ◽  
Author(s):  
Marijana Skific ◽  
Mirna Golemovic ◽  
Kristina Crkvenac-Gornik ◽  
Radovan Vrhovac ◽  
Branka Golubic Cepulic

Due to their ability to induce immunological tolerance in the recipient, mesenchymal stromal cells (MSCs) have been utilized in the treatment of various hematological and immune- and inflammation-mediated diseases. The clinical application of MSCs implies prior in vitro expansion that usually includes the use of fetal bovine serum (FBS). The present study evaluated the effect of different platelet lysate (PL) media content on the biological properties of MSCs. MSCs were isolated from the bone marrow of 13 healthy individuals and subsequently expanded in three different culture conditions (10% PL, 5% PL, 10% FBS) during 4 passages. The cells cultured in different conditions had comparable immunophenotype, clonogenic potential, and differentiation capacity. However, MSC growth was significantly enhanced in the presence of PL. Cultures supplemented with 10% PL had a higher number of cumulative population doublings in all passages when compared to the 5% PL condition (p < 0.03). Such a difference was also observed when 10% PL and 10% FBS conditions were compared (p < 0.005). A statistically significant difference in population doubling time was determined only between the 10% PL and 10% FBS conditions (p < 0.005). Furthermore, MSCs cultured in 10% PL were able to cause a 66.9% reduction of mitogen-induced lymphocyte proliferation. Three chromosome aberrations were detected in PL conditions. Since two changes occurred in the same do nor, it is possible they were donor dependent rather than caused by the culture condition. These findings demonstrate that a 10% PL condition enables a higher yield of MSCs within a shorter time without altering MSC properties, and should be favored over the 5% PL condition.


Sign in / Sign up

Export Citation Format

Share Document