Membrane Lipids and Maximum Lifespan in Clownfish

Author(s):  
PEDRO FRANCISCO ALMAIDA PAGÁN ◽  
Alejandro Lucas-Sanchez ◽  
Antonio Martinez-Nicolas ◽  
Eva Terzibasi ◽  
Maria Angeles Rol de Lama ◽  
...  

Abstract The longevity-homeoviscous adaptation (LHA) theory of aging states that lipid composition of cell membranes is linked to metabolic rate and lifespan, which has been widely shown in mammals and birds but not sufficiently in fish. In this study, two species of the genus Amphiprion (A. percula and A. clarkii, with estimated maximum lifespan potentials [MLSP] of 30 and 9-16 years, respectively) and the damselfish Chromis viridis (estimated MLSP of 1-2 years) were chosen to test the LHA theory of aging in a potential model of exceptional longevity. Brain, livers and samples of skeletal muscle were collected for lipid analyses and integral part in the computation of membrane peroxidation indexes (PIn) from phospholipid (PL) fractions and PL fatty acid composition. When only the two anemonefish were compared, results pointed to the existence of a negative correlation between membrane PIn value and maximum life expectancy, well in line with the predictions from the LHA theory of aging. Nevertheless, contradictory data were obtained when the two clownfish were compared to the shorter-lived C. viridis. This results along with those obtained in previous studies on fish denote that the magnitude (and sometimes the direction) of the differences observed in membrane lipid composition and peroxidation index with MLSP cannot explain alone the diversity in longevity found among fishes.

Author(s):  
Pedro F. Almaida-Pagan ◽  
Alejandro Lucas-Sanchez ◽  
Antonio Martinez-Nicolas ◽  
Eva Terzibasi ◽  
Maria Angeles Rol de Lama ◽  
...  

AbstractThe longevity-homeoviscous adaptation (LHA) theory of ageing states that lipid composition of cell membranes is linked to metabolic rate and lifespan, which has been widely shown in mammals and birds but not sufficiently in fish. In this study, two species of the genus Amphiprion (Amphiprion percula and Amphiprion clarkii, with estimated maximum lifespan potentials [MLSP] of 30 and 9–16 years, respectively) and the damselfish Chromis viridis (estimated MLSP of 1–2 years) were chosen to test the LHA theory of ageing in a potential model of exceptional longevity. Brain, livers and samples of skeletal muscle were collected for lipid analyses and integral part in the computation of membrane peroxidation indexes (PIn) from phospholipid (PL) fractions and PL fatty acid composition. When only the two Amphiprion species were compared, results pointed to the existence of a negative correlation between membrane PIn value and maximum lifespan, well in line with the predictions from the LHA theory of ageing. Nevertheless, contradictory data were obtained when the two Amphiprion species were compared to the shorter-lived C. viridis. These results along with those obtained in previous studies on fish denote that the magnitude (and sometimes the direction) of the differences observed in membrane lipid composition and peroxidation index with MLSP cannot explain alone the diversity in longevity found among fishes.


1997 ◽  
Vol 322 (2) ◽  
pp. 435-440 ◽  
Author(s):  
Neil M. BROADWAY ◽  
E. David SAGGERSON

We have investigated the extent to which membrane environment affects the catalytic properties of the malonyl-CoA-sensitive carnitine acyltransferase of liver microsomal membranes. Arrhenius-type plots of activity were linear in the absence and presence of malonyl-CoA (2.5 μM). Sensitivity to malonyl-CoA increased with decreasing assay temperature. Partly purified enzyme displayed an increased K0.5 (substrate concentration supporting half the maximal reaction rate) for myristoyl-CoA and a reduced sensitivity to malonyl-CoA compared with the enzyme in situ in membranes. Reconstitution with liposomes of a range of compositions restored the K0.5 for myristoyl-CoA to values similar to that seen in native membranes. The lipid requirements for restoration of sensitivity to malonyl-CoA were more stringent. When animals were starved for 24 h the specific activity of carnitine acyltransferase in microsomal membrane residues was increased 3.3-fold, whereas sensitivity to malonyl-CoA was decreased to 1/2.8. When enzymes partly purified from fed and starved animals were reconstituted into crude soybean phosphatidylcholine liposomes there was no difference in sensitivity to malonyl-CoA. When partly purified enzyme from fed rats was reconstituted into liposomes prepared from microsomal membrane lipids from fed animals it was 2.2-fold more sensitive to malonyl-CoA than when reconstituted with liposomes prepared from microsomal membrane lipids from starved animals. This suggests that the physiological changes in sensitivity to malonyl-CoA are mediated via changes in membrane lipid composition rather than via modification of the enzyme protein itself. The increased specific actvity of acyltransferase observed on starvation could not be attributed to changes in membrane lipid composition.


1984 ◽  
Vol 246 (4) ◽  
pp. R460-R470 ◽  
Author(s):  
J. R. Hazel

The metabolic adjustments responsible for the “homeoviscous adaptation” of membrane lipid composition in fish are examined with special reference to the rainbow trout, Salmo gairdneri. The percentage of fatty acid lipogenesis attributable to unsaturates was elevated after an acute drop in temperature but declined with continued cold exposure (i.e., cold acclimation). In contrast, selected desaturation reactions [particularly those involved in the production of polyunsaturated fatty acids (PUFA) of the n-3 and/or n-6 families] proceeded more rapidly in cold-than in warm-acclimated trout. Different time courses for the change in monoene and PUFA levels of hepatic microsomal membranes during thermal acclimation suggest that the various desaturase enzymes contribute to the acclimatory response at different times. Certain fatty acids, particularly the delta 5-desaturation products of the n-3 (20:5 delta 5,8,11,14,17) and n-6 (20:4 delta 5,8,11,14) series, were preferentially incorporated into phospholipids at cold temperatures and by cold-acclimated trout, due in part to the direct effect of temperature on the substrate preferences of the phospho- and acyltransferase enzymes of de novo phospholipid biosynthesis; however, chain length rather than degree of unsaturation per se may determine the temperature-dependent pattern of fatty acid incorporation. Both acute and chronic cold exposure elevated the incorporation of PUFA into phosphatidylserine (PS), suggesting that the conversion of PS to phosphatidylethanolamine (PE) may be activated at cold temperatures. The rate of homeoviscous adaptation appears to be limited by the rate of membrane lipid turnover, which although generally positively correlated with acclimation temperature, did vary depending on the phospholipid moiety and tissue considered. Finally the direct acylation of lysophospholipids formed during the process of membrane turnover may contribute to both rapid and acclimatory adjustments in membrane lipid composition.


2004 ◽  
Vol 287 (3) ◽  
pp. R633-R641 ◽  
Author(s):  
B. J. Wu ◽  
A. J. Hulbert ◽  
L. H. Storlien ◽  
P. L. Else

The influence of membrane lipid composition on the molecular activity of a major membrane protein (the sodium pump) was examined as a test of the membrane pacemaker theory of metabolism. Microsomal membranes from the kidneys of cattle (Bos taurus) and crocodiles (Crocodylus porosus) were found to possess similar sodium pump concentrations, but cattle membranes showed a four- to fivefold higher enzyme (Na+-K+-ATPase) activity when measured at 37°C. The molecular activity of the sodium pumps (ATP/min) from both species was fully recoverable when delipidated pumps were reconstituted with membrane from the original source (same species). The results of experiments involving species membrane crossovers showed cattle sodium pump molecular activity to progressively decrease from 3,245 to 1,953 ( P < 0.005) to 1,031 ( P < 0.003) ATP/min when subjected to two cycles of delipidation and reconstitution with crocodile membrane as a lipid source. In contrast, the molecular activity of crocodile sodium pumps progressively increased from 729 to 908 ( P < 0.01) to 1,476 ( P = 0.01) ATP/min when subjected to two cycles of delipidation and reconstitution with cattle membrane as a lipid source. The lipid composition of the two membrane preparations showed similar levels of saturated (∼31–34%) and monounsaturated (∼23–25%) fatty acids. Cattle membrane had fourfold more n-3 polyunsaturated fatty acids (11.2 vs. 2.9%) but had a reduced n-6 polyunsaturate content (29 vs. 43%). The results support the membrane pacemaker theory of metabolism and suggest membrane lipids and their polyunsaturates play a significant role in determining the molecular activity of the sodium pump.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 919
Author(s):  
Manuel Torres ◽  
Sebastià Parets ◽  
Javier Fernández-Díaz ◽  
Roberto Beteta-Göbel ◽  
Raquel Rodríguez-Lorca ◽  
...  

Membranes are mainly composed of a lipid bilayer and proteins, constituting a checkpoint for the entry and passage of signals and other molecules. Their composition can be modulated by diet, pathophysiological processes, and nutritional/pharmaceutical interventions. In addition to their use as an energy source, lipids have important structural and functional roles, e.g., fatty acyl moieties in phospholipids have distinct impacts on human health depending on their saturation, carbon length, and isometry. These and other membrane lipids have quite specific effects on the lipid bilayer structure, which regulates the interaction with signaling proteins. Alterations to lipids have been associated with important diseases, and, consequently, normalization of these alterations or regulatory interventions that control membrane lipid composition have therapeutic potential. This approach, termed membrane lipid therapy or membrane lipid replacement, has emerged as a novel technology platform for nutraceutical interventions and drug discovery. Several clinical trials and therapeutic products have validated this technology based on the understanding of membrane structure and function. The present review analyzes the molecular basis of this innovative approach, describing how membrane lipid composition and structure affects protein-lipid interactions, cell signaling, disease, and therapy (e.g., fatigue and cardiovascular, neurodegenerative, tumor, infectious diseases).


2008 ◽  
Vol 74 (8) ◽  
pp. 2433-2440 ◽  
Author(s):  
Stefan Schouten ◽  
Ellen C. Hopmans ◽  
Marianne Baas ◽  
Henry Boumann ◽  
Sonja Standfest ◽  
...  

ABSTRACT In this study we analyzed the membrane lipid composition of “Candidatus Nitrosopumilus maritimus,” the only cultivated representative of the cosmopolitan group I crenarchaeota and the only mesophilic isolate of the phylum Crenarchaeota. The core lipids of “Ca. Nitrosopumilus maritimus” consisted of glycerol dialkyl glycerol tetraethers (GDGTs) with zero to four cyclopentyl moieties. Crenarchaeol, a unique GDGT containing a cyclohexyl moiety in addition to four cyclopentyl moieties, was the most abundant GDGT. This confirms unambiguously that crenarchaeol is synthesized by species belonging to the group I.1a crenarchaeota. Intact polar lipid analysis revealed that the GDGTs have hexose, dihexose, and/or phosphohexose head groups. Similar polar lipids were previously found in deeply buried sediments from the Peru margin, suggesting that they were in part synthesized by group I crenarchaeota.


2003 ◽  
Vol 77 (23) ◽  
pp. 12819-12828 ◽  
Author(s):  
Wai-Ming Lee ◽  
Paul Ahlquist

ABSTRACT Multifunctional RNA replication protein 1a of brome mosaic virus (BMV), a positive-strand RNA virus, localizes to the cytoplasmic face of endoplasmic reticulum (ER) membranes and induces ER lumenal spherules in which viral RNA synthesis occurs. We previously showed that BMV RNA replication in yeast is severely inhibited prior to negative-strand RNA synthesis by a single-amino-acid substitution in the ole1w allele of yeast Δ9 fatty acid (FA) desaturase, which converts saturated FAs (SFAs) to unsaturated FAs (UFAs). Here we further define the relationships between 1a, membrane lipid composition, and RNA synthesis. We show that 1a expression increases total membrane lipids in wild-type (wt) yeast by 25 to 33%, consistent with recent results indicating that the numerous 1a-induced spherules are enveloped by invaginations of the outer ER membrane. 1a did not alter total membrane lipid composition in wt or ole1w yeast, but the ole1w mutation selectively depleted 18-carbon, monounsaturated (18:1) FA chains and increased 16:0 SFA chains, reducing the UFA-to-SFA ratio from ∼2.5 to ∼1.5. Thus, ole1w inhibition of RNA replication was correlated with decreased levels of UFA, membrane fluidity, and plasticity. The ole1w mutation did not alter 1a-induced membrane synthesis, 1a localization to the perinuclear ER, or colocalization of BMV 2a polymerase, nor did it block spherule formation. Moreover, BMV RNA replication templates were still recovered from cell lysates in a 1a-induced, 1a- and membrane-associated, and nuclease-resistant but detergent-susceptible state consistent with spherules. However, unlike nearby ER membranes, the membranes surrounding spherules in ole1w cells were not distinctively stained with osmium tetroxide, which interacts specifically with UFA double bonds. Thus, in ole1w cells, spherule-associated membranes were locally depleted in UFAs. This localized UFA depletion helps to explain why BMV RNA replication is more sensitive than cell growth to reduced UFA levels. The results imply that 1a preferentially interacts with one or more types of membrane lipids.


Author(s):  
V.A. Korolev ◽  
O.A. Medvedeva ◽  
A.D. Bogomazov ◽  
N.A. Verevkina ◽  
I.V. Korolev

The erythrocyte membrane is a user-friendly model, since its structural is similar to that of molecular structure of plasma membranes. Therefore, the slightly corrected patterns of changes in the structure and functions of the erythrocyte membrane can be transferred to other membrane systems. Changes in the structure of membrane lipids under various factors are of great importance for the functional state of both the membranes themselves and the body as a whole. In diseases with severe hypoxic syndrome, changes in the membrane structure are the most obvious ones. These disorders can be observed under exposure to various drugs, namely, broad-spectrum antibiotics. The aim of the paper is to study the lipid composition of erythrocyte membranes under gentamicin-associated dysbiosis and to correct it with the B. Bifidum. Materials and Methods. The study was conducted on 60 BALB/c mice (18–20 g.). The animals were divided into three groups, 20 animals in each. The first group is a control one (intact mice). The second group consisted of animals with modeled gentamicin-associated dysbiosis. Animals of the third group were treated with Bifidum BAG Probiotic (21 days, once a day) after the formation of fixed drug dysbiosis. Traditional methods were used to determine the lipid composition of red blood cells. Chromatography was performed according to V.I. Krylov method. Results. To correct pathological conditions, the authors used Bifidum BAG probiotic, which consists of living active bifidobacteria B. bifidum, B. longum, and powerful plant antioxidant, dihydroquercetin. Administration of a broad-spectrum antibiotic (gentamicin) resulted in a significant change in the quantitative composition of neutral lipids and phospholipids. Intake of a complex probiotic led to the membrane lipid spectrum correction. Conclusion. It is established that Bifidum BAG probiotic leads to a normalization of the erythrocyte membrane lipid spectrum with gentamicin-associated dysbiosis, which may be associated with the antioxidant, membrane-stabilizing and antihypoxic effect of the drug. Keywords: dysbiosis, phospholipids, neutral lipids, erythrocyte membrane, Bifidum BAG. Эритроцитарная мембрана является удобным модельным объектом, так как имеет общие принципы строения с молекулярной структурой плазматических мембран, поэтому закономерности изменений структуры и функций мембраны эритроцитов с незначительной долей коррекции могут быть перенесены на другие мембранные системы. Изменения в структуре липидов мембран под влиянием различных факторов имеют большое значение для функционального состояния как самих мембран, так и организма в целом. При заболеваниях, которые протекают с выраженным гипоксическим синдромом, изменения структуры мембраны наиболее выражены. Эти нарушения могут наблюдаться при воздействии различных лекарственных препаратов, в т.ч. антибиотиков широкого спектра действия. Целью исследования явилось изучение состава липидов мембран эритроцитов в условиях гентамицинассоциированного дисбиоза и коррекции его комплексным препаратом «Бифидум БАГ». Материалы и методы. Исследование проведено на 60 мышах линии BALB/c с массой 18–20 г. Животные были разделены на три группы по 20 особей в каждой. Первая группа – контрольная (интактные мыши). Вторую группу составили животные, которым моделировали гентамицинассоциированный дисбиоз. Животные третьей группы интрагастрально получали комплексный пробиотик «Бифидум БАГ» в течение 21 дня 1 раз в сутки после формирования стойкого лекарственного дисбактериоза. Липидный состав эритроцитов определяли традиционными методами. Хроматографирование проводили по методу В.И. Крылова. Результаты. Для коррекции патологических состояний использовали комплексный препарат «Бифидум БАГ», в состав которого, помимо живых активных видов бифидобактерий B. bifidum и B. Longum, входит растительный антиоксидант – дигидрокверцетин. Применение антибиотика широкого спектра действия (гентамицина) привело к значительному изменению количественного состава нейтральных липидов и фосфолипидов. Введение комплексного пробиотика привело к коррекции спектра липидов мембран. Выводы. Установлено, что комплексный препарат «Бифидум БАГ» приводит к нормализации спектра липидов мембран эритроцитов при гентамицинассоциированном дисбиозе, что может быть связано с антиоксидантным, мембраностабилизирующим и антигипоксическим действием препарата. Ключевые слова: дисбиоз, фосфолипиды, нейтральные липиды, мембрана эритроцита, «Бифидум БАГ».


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4765 ◽  
Author(s):  
Vanita C. Malekar ◽  
James D. Morton ◽  
Richard N. Hider ◽  
Robert H. Cruickshank ◽  
Simon Hodge ◽  
...  

Homeoviscous adaptation (HVA) is a key cellular response by which fish protect their membranes against thermal stress. We investigated evolutionary HVA (long time scale) in Antarctic and non-Antarctic fish. Membrane lipid composition was determined for four Perciformes fish: two closely related Antarctic notothenioid species (Trematomus bernacchiiandPagothenia borchgrevinki); a diversified related notothenioid Antarctic icefish (Chionodraco hamatus); and a New Zealand species (Notolabrus celidotus). The membrane lipid compositions were consistent across the three Antarctic species and these were significantly different from that of the New Zealand species. Furthermore, acclimatory HVA (short time periods with seasonal changes) was investigated to determine whether stenothermal Antarctic fish, which evolved in the cold, stable environment of the Southern Ocean, have lost the acclimatory capacity to modulate their membrane saturation states, making them vulnerable to anthropogenic global warming. We compared liver membrane lipid composition in two closely related Antarctic fish species acclimated at 0 °C (control temperature), 4 °C for a period of 14 days inT. bernacchiiand 28 days forP. borchgrevinki,and 6 °C for 7 days in both species. Thermal acclimation at 4 °C did not result in changed membrane saturation states in either Antarctic species. Despite this, membrane functions were not compromised, as indicated by declining serum osmolality, implying positive compensation by enhanced hypo-osmoregulation. Increasing the temperature to 6 °C did not change the membrane lipids ofP. borchgrevinki.However, inT. bernacchii,thermal acclimation at 6 °C resulted in an increase of membrane saturated fatty acids and a decline in unsaturated fatty acids. This is the first study to show a homeoviscous response to higher temperatures in an Antarctic fish, although for only one of the two species examined.


Sign in / Sign up

Export Citation Format

Share Document