scholarly journals Assessing the Impact of Algae Management Strategies on Anurans and Aquatic Communities

Author(s):  
Courtney Dvorsky ◽  
Kambrie Riddle ◽  
Michelle Boone

Abstract Residential areas are increasing on the landscape but their ability to provide suitable habitat is often based on management for recreational use and aesthetics. Amphibians rely on both aquatic and terrestrial habitat making them susceptible to changes in land-cover and land-use. As anthropogenic land-use change increases, it is imperative to assess how pond management practices impact aquatic communities. We assessed the impact of Aquashade (a common non-toxic pond dye) and copper sulfate (a toxic algaecide) on American toad (Anaxyrus americanus), northern leopard frog (Lithobates pipiens), and Cope’s gray treefrog (Hyla chrysoscelis) metamorphosis in outdoor mesocosm experiments. We also evaluated the relative impact of tadpole grazing and chemical treatment on phytoplankton and periphyton abundance. We found no significant effects of pond management treatment on anuran metamorphosis, suggesting that addition of Aquashade and copper sulfate does not significantly impact anurans under these experimental conditions. However, while we found no differences in phytoplankton and periphyton abundance due to pond management treatment, presence of tadpoles significantly decreased phytoplankton and periphyton abundance over time. This result suggests that the creation of suitable pond habitat for anuran tadpoles may be an efficient and ecologically beneficial form of pond management treatment to maintain water quality.

Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 330
Author(s):  
Jean-Christophe Castella ◽  
Sonnasack Phaipasith

Road expansion has played a prominent role in the agrarian transition that marked the integration of swidden-based farming systems into the market economy in Southeast Asia. Rural roads deeply altered the landscape and livelihood structures by allowing the penetration of boom crops such as hybrid maize in remote territories. In this article, we investigate the impact of rural road developments on livelihoods in northern Laos through a longitudinal study conducted over a period of 15 years in a forest frontier. We studied adaptive management strategies of local stakeholders through the combination of individual surveys, focus group discussions, participatory mapping and remote-sensing approaches. The study revealed the short-term benefits of the maize feeder roads on poverty alleviation and rural development, but also the negative long-term effects on agroecosystem health and agricultural productivity related to unsustainable land use. Lessons learnt about the mechanisms of agricultural intensification helped understanding the constraints faced by external interventions promoting sustainable land management practices. When negotiated by local communities for their own interest, roads may provide livelihood-enhancing opportunities through access to external resources, rather than undermining them.


Soil Research ◽  
2016 ◽  
Vol 54 (1) ◽  
pp. 94 ◽  
Author(s):  
Iris Vogeler ◽  
Rogerio Cichota ◽  
Josef Beautrais

Investigation of land-use and management changes at regional scales require the linkage of farm-system models with land-resource information, which for pastoral systems includes forage supply. The New Zealand Land Resource Inventory (NZLRI) and associated Land Use Capability (LUC) database include estimates of the potential stock-carrying capacity across the country, which can be used to derive estimates of average annual pasture yields. Farm system models and decision support tools, however, require information on the seasonal patterns of pasture growth. To generate such pasture growth curves (PGCs), the Agricultural Production Systems Simulator (APSIM) was used, with generic soil profiles based on descriptions of LUC classes, to generate PGCs for three regions of New Zealand. Simulated annual pasture yields were similar to the estimates of annual potential pasture yield in the NZLRI spatial database, and they provided information on inter-annual variability. Simulated PGCs generally agreed well with measured long-term patterns of seasonal pasture growth. The approach can be used to obtain spatially discrete estimates of seasonal pasture growth patterns across New Zealand for use in farm system models and for assessing the impact of management practices and climate change on the regional sustainability.


2020 ◽  
Vol 61 (4) ◽  
pp. 313-327
Author(s):  
Akıner Ernur

The Büyük Melen river in the Melen Basin meets Istanbul's drinking water needs. Protecting the basin against nutrient pollution is vital in this regard as well. This study focuses on the best possible management practice (BMPs) in the Melen Basin to reduce the export of nutrients from the agricultural areas. A region comprising industrial, farming, and residential zones is the Melen basin. There is a forecast of global climate change in Turkey, and scientists and also governors must know which areas are no longer farming zones and which will be more appropriate for agriculture. Turkey's territory is a high-risk desertification area. In Melen Basin, the soil type and land use properties have been determined and mapped using GIS and Soil and Water Assessment Tool (SWAT). Buffer BMP filter strips can be used effectively for nutrient protection that can be carried from residential areas and motorways by runoff. The region in the basin is steep, and its clay and sandy soil structures are ideal for parallel terraces, grade stabilization, strip, and contour cultivation. Unless the ground can not retain or store water, the soil can undergo sudden floods, causing an erosion of the soil's productive surface layer. When we protect the land, this condition is reduced. The land type and land use mapping should be drawn up as soon as possible for the remaining Turkish basins by scientific methods. This research is intended to be an illustration for researches on other agricultural basins in Turkey and the world for this reason.


2021 ◽  
pp. 478-493
Author(s):  
Didik Prasetyo ◽  
Yokyok Hadiprakarsa ◽  
Wanda Kuswanda ◽  
Jito Sugardjito

To protect Tapanuli orangutan it is essential to understand the actual situation. It has been studied 15% of its population live outside the protected area facing a density disruption due to forest conversion. Several best management practices have been created and tested for different natural concession types. Yet, the main objective to reduce the impact and increase wildlife survival is far away from the goal. To improve our understanding of the species survival within ongoing project construction, we conducted population density monitoring prior- to post-construction time frames within the hydroelectric dam project. Also, we carried out spatial analysis to understand the land cover change and orangutan’s suitable habitat distribution. This study found that during high construction activities, orangutans were avoiding the threat sources, and returned when the disturbances reduced. These findings indicated orangutans are ecology flexible and have the capability to increase its survival, although the company’s involvement is crucial to facilitate the successes. Our study is based on indirect observation, and spatial modeling, which may lead to an uncertain conclusion. Further research on orangutan ecology and behavior is prioritized.


2020 ◽  
Vol 65 (4) ◽  
pp. 719-727
Author(s):  
Kazuaki Kazato ◽  
Yuya Watari ◽  
Tadashi Miyashita

Abstract Free-ranging cats Felis silvestris catus are harmful to endemic species, especially on islands. Effective management practices require an understanding of their habitat use and population source at the landscape level. We aimed to identify the source of the free-ranging cat population on Tokunoshima Island, Japan, which harbors a variety of endemic organisms as well as human settlements. Trapping data for the whole island were provided by local governments, and landscape factors (residential, agricultural, and woodlot areas and cattle barn density) affecting cat density were explored. An analysis of live-capture data indicated that the density (per 1 km2) of free-ranging cats was positively correlated with the densities of cattle barns and woodlot areas and negatively correlated with residential areas. An interview survey revealed that nearly half of the cattle barns feed free-ranging cats. The source habitat of free-ranging cats appears to be areas with a high density of cattle barns and a high percentage of woodlots in human-dominated landscapes. Feeding cats in cattle barns may strengthen the bottom-up process of population growth on the island. To reduce the impact of cats on endemic species on Tokunoshima Island, efforts to stop feeding cats in cattle barns are important. Reaching a consensus with stakeholders will require further studies of the ecological risks posed by free-ranging cats.


Author(s):  
Jan Paul Lindner ◽  
Ulrike Eberle ◽  
Eva Knuepffer ◽  
Carla R. V. Coelho

Abstract Purpose The impact of land use on biodiversity is a topic that has received considerable attention in life cycle assessment (LCA). The methodology to assess biodiversity in LCA has been improved in the past decades. This paper contributes to this progress by building on the concept of conditions for maintained biodiversity. It describes the theory for the development of mathematical functions representing the impact of land uses and management practices on biodiversity. Methods The method proposed here describes the impact of land use on biodiversity as a decrease in biodiversity potential, capturing the impact of management practices. The method can be applied with weighting between regions, such as ecoregions. The biodiversity potential is calculated through functions that describe not only parameters which are relevant to biodiversity, for example, deadwood in a forest, but also the relationships between those parameters. For example, maximum biodiversity would hypothetically occur when the nutrient balance is ideal and no pesticide is applied. As these relationships may not be readily quantified, we propose the use of fuzzy thinking for biodiversity assessment, using AND/OR operators. The method allows the inclusion of context parameters that represent neither the management nor the land use practice being investigated, but are nevertheless relevant to biodiversity. The parameters and relationships can be defined by either literature or expert interviews. We give recommendations on how to create the biodiversity potential functions by providing the reader with a set of questions that can help build the functions and find the relationship between parameters. Results and discussion We present a simplified case study of paper production in the Scandinavian and Russian Taiga to demonstrate the applicability of the method. We apply the method to two scenarios, one representing an intensive forestry practice, and another representing lower intensity forestry management. The results communicate the differences between the two scenarios quantitatively, but more importantly, are able to provide guidance on improved management. We discuss the advantages of this condition-based approach compared to pre-defined intensity classes. The potential drawbacks of defining potential functions from industry-derived studies are pointed out. This method also provides a less strict approach to a reference situation, consequently allowing the adequate assessment of cases in which the most beneficial biodiversity state is achieved through management practices. Conclusions The originality of using fuzzy thinking is that it enables land use management practices to be accounted for in LCA without requiring sub-categories for different intensities to be explicitly established, thus moving beyond the classification of land use practices. The proposed method is another LCIA step toward closing the gap between land use management practices and biodiversity conservation goals.


2006 ◽  
Vol 86 (3) ◽  
pp. 431-439 ◽  
Author(s):  
T. Huffman ◽  
R. Ogston ◽  
T. Fisette ◽  
B. Daneshfar ◽  
P-Y. Gasser, L. White ◽  
...  

The land use and management data requirements for assessing, monitoring and reporting on the impact of agricultural production practices on the environment, especially in a country as large as Canada, are considerable. In view of the fact that environmental assessments are a relatively new phenomenon, data collection activities targeted toward these needs are not widespread. As a result, we find it necessary to acquire and integrate a variety of data sources with differing time lines, spatial scales and sampling frameworks. This paper uses our current activities with respect to Kyoto reporting as a focus to present and discuss the types of data required and the spatial analysis and integration procedures being developed to provide them. The essential data for this activity include the area of crop and land use types, land use changes since 1990, farm and land management practices and biomass production. The spatial framework selected for national analysis is the Soil Landscapes of Canada, and the primary existing data sources are the Census of Agriculture, sample-derived yield estimates and satellite-based land cover products. These are supplemented with detailed, multi-season, multi-year satellite image interpretations conducted at an ecologically and statistically stratified sample of sites across the country. The use of these data in preparing an account of greenhouse gas sources and sinks identified a number of gaps and problems, and a brief outline of future work designed to improve the data inputs is presented. Key words: Kyoto reporting, data integration, land use and management, greenhouse gases, carbon sequestration


2012 ◽  
Vol 60 (1) ◽  
pp. 33-44 ◽  
Author(s):  
Bahman Amiri ◽  
K. Sudheer ◽  
Nicola Fohrer

Linkage Between In-Stream Total Phosphorus and Land Cover in Chugoku District, Japan: An Ann ApproachDevelopment of any area often leads to more intensive land use and increase in the generation of pollutants. Modeling these changes is critical to evaluate emerging changes in land use and their effect on stream water quality. The objective of this study was to assess the impact of spatial patterns in land use and population density on the water quality of streams, in case of data scarcity, in the Chugoku district of Japan. The study employed artificial neural network (ANN) technique to assess the relationship between the total phosphorous (TP) in river water and the land use in 21 river basins in the district, and the model was able to reasonably estimate the TP in the stream water. Uncertainty analysis of ANN estimates was performed using the Monte Carlo framework, and the results indicated that the ANN model predictions are statistically similar to the characteristics of the measured TP values. It was observed that any reduction in forested area or increase in agricultural land in the watersheds may cause the increase of TP concentration in the stream. Therefore, appropriate watershed management practices should be followed before making any land use change in the Chugoku district.


Sign in / Sign up

Export Citation Format

Share Document