scholarly journals Bacteriostatic effects of benzyl isothiocyanate on Vibrio parahaemolyticus: Transcriptomic analysis and morphological verification

Author(s):  
Ke Zhang ◽  
Jie Song ◽  
Hongyan Wu ◽  
Hongshun Hao ◽  
Jingran Bi ◽  
...  

Abstract Vibrio parahaemolyticus is a food-borne pathogenic microorganism that commonly exists in aquatic products. In this study, the antibacterial activities of benzyl isothiocyanate (BITC) against V. parahaemolyticus were investigated by both transcriptomic analysis and morphological verification. Treatment with 1/8 minimum inhibitory concentration (1/8 MIC) BITC resulted in 234 upregulated genes and 273 downregulated genes. We selected six virulence genes that were significantly downregulated and verified them using quantitative real-time reverse transcription-polymerase chain reaction. The verification results revealed that the relative expression levels of the six genes VP0820, VP0548, VP2233, VPA2362, fliA and fliG were only 31.0%, 31.1%, 55.8%, 57.0%, 75.3%, and 79.9% of the control group, respectively. Among them, genes VP2233, fliA and fliG are related to flagella and VP2362 can regulate a protein relevant to biofilm formation. Morphologically, we verified that the swimming diffusion diameter of V. parahaemolyticus was significantly reduced by 14.9%, and biofilm formation was significantly inhibited by treatment with 1/8 MIC BITC. These results indicated that 1/8 MIC BITC had antibacterial effect on V. parahaemolyticus by inhibiting virulence gene expression related to flagella and biofilm. These findings are helpful to further elucidate the bacteriostatic mechanism of BITC on V. parahaemolyticus and other food-borne pathogens.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jianan Liu ◽  
Ke Zhang ◽  
Jie Song ◽  
Hongyan Wu ◽  
Hongshun Hao ◽  
...  

Abstract Background Foodborne illness caused by Vibrio parahaemolyticus (V. parahaemolyticus) is generally associated with the consumption of seafood. Fish and other seafood can be contaminated with V. parahaemolyticus, natural inhabitants of the marine, estuarine, and freshwater environment. In this study, the antibacterial activities of benzyl isothiocyanate (BITC) against V. parahaemolyticus were investigated by both transcriptomic analysis and morphological verification. Results Treatment with 1/8 minimum inhibitory concentration (1/8 MIC) BITC resulted in 234 upregulated genes and 273 downregulated genes. The results validated by quantitative real-time polymerase chain reaction (qRT-PCR) revealed that the relative expression levels of the six genes VP0820, VP0548, VP2233, VPA2362, fliA and fliG were only 31.0%, 31.1%, 55.8%, 57.0%, 75.3%, and 79.9% of the control group, respectively. Among them, genes VP2233, fliA and fliG are related to flagella and VP2362 can regulate a protein relevant to biofilm formation. Morphologically, we verified that the swimming diffusion diameter of V. parahaemolyticus was significantly reduced by 14.9% by bacterial swimming ability, and biofilm formation was significantly inhibited by treatment with 1/8 MIC BITC by crystal violet quantification assay. Conclusions These results indicated that 1/8 MIC BITC had antibacterial effect on V. parahaemolyticus by inhibiting virulence gene expression related to flagella and biofilm.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 761 ◽  
Author(s):  
Jie Song ◽  
Hong-Man Hou ◽  
Hong-Yan Wu ◽  
Ke-Xin Li ◽  
Yan Wang ◽  
...  

Vibrio parahaemolyticus isolated from seafood is a pathogenic microorganism that leads to several acute diseases that are harmful to our health and is frequently transmitted by food. Therefore, there is an urgent need for the control and suppression of this pathogen. In this paper, transcriptional analysis was used to determine the effect of treatment with benzyl isothiocyanate (BITC) extracted from cruciferous vegetables on V. parahaemolyticus and to elucidate the molecular mechanisms underlying the response to BITC. Treatment with BITC resulted in 332 differentially expressed genes, among which 137 genes were downregulated, while 195 genes were upregulated. Moreover, six differentially expressed genes (DEGs) in RNA sequencing studies were further verified by quantitative real-time polymerase chain reaction (qRT-PCR). Genes found to regulate virulence encoded an l-threonine 3-dehydrogenase, a GGDEF family protein, the outer membrane protein OmpV, a flagellum-specific adenosine triphosphate synthase, TolQ protein and VirK protein. Hence, the results allow us to speculate that BITC may be an effective control strategy for inhibiting microorganisms growing in foods.


PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0168305 ◽  
Author(s):  
Mara Baldry ◽  
Anita Nielsen ◽  
Martin S. Bojer ◽  
Yu Zhao ◽  
Cathrine Friberg ◽  
...  

2020 ◽  
Author(s):  
Yadong Sun ◽  
Shanshan Wen ◽  
Lili Zhao ◽  
Qiqi Xia ◽  
Yue Pan ◽  
...  

Abstract Background The aim of this study was to investigate the association among biofilm formation, virulence gene expression, and antibiotic resistance in P. mirabilis isolates collected from diarrhetic animals (n = 176) in northeast China between September 2014 and October 2016. Results Approximately 92.05% of the isolates were biofilm producers, whereas 7.95% of the isolates were non-producers. The prevalence of virulence genes in biofilm producers was significantly higher than that in non-producers. Biofilm production was significantly associated with the expression of ureC , zapA , rsmA , hmpA , mrpA , atfA , and pmfA ( P < 0.05). Drug susceptibility tests revealed that approximately 76.7% of the isolates were multidrug-resistant (MDR) and extensively drug-resistant (XDR). Biofilm production was significantly associated with resistance to doxycycline, tetracycline, sulfamethoxazole, kanamycin, and cephalothin ( P < 0.05). Although the pathogenicity of the biofilm producers was stronger than that of the non-producers, the biofilm-forming ability of the isolates was not significantly associated with morbidity and mortality in mice ( P > 0.05). Conclusion Our findings suggested that a high level of multidrug resistance in diarrhetic animals infected with P. mirabilis in northeast China.The results of this study indicated that the positive rates of the genes expressed by biofilm-producing P. mirabilis isolates were significantly higher than those expressed by non-producing isolates.


2019 ◽  
Author(s):  
Sampriti Mukherjee ◽  
Matthew Jemielita ◽  
Vasiliki Stergioula ◽  
Mikhail Tikhonov ◽  
Bonnie L. Bassler

ABSTRACTPseudomonas aeruginosa transitions between the free-swimming state and the sessile biofilm mode during its pathogenic lifestyle. We show that quorum sensing represses P. aeruginosa biofilm formation and virulence by activating expression of genes encoding the KinB-AlgB two-component system. Phospho-AlgB represses biofilm and virulence genes, while KinB dephosphorylates, and thereby, inactivates AlgB. We discover that the photoreceptor BphP is the kinase that, in response to light, phosphorylates and activates AlgB. Indeed, exposing P. aeruginosa to light represses biofilm formation and virulence gene expression. To our knowledge, P. aeruginosa was not previously known to detect light. The KinB-AlgB-BphP module is present in all Pseudomonads, and we demonstrate that AlgB is the cognate response regulator for BphP in diverse bacterial phyla. We propose that KinB-AlgB-BphP constitutes a “three-component” system and AlgB is the node at which varied sensory information is integrated. This study sets the stage for light-mediated control of P. aeruginosa infectivity.


PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e47255 ◽  
Author(s):  
Yibao Ma ◽  
Yuanxi Xu ◽  
Bryan D. Yestrepsky ◽  
Roderick J. Sorenson ◽  
Meng Chen ◽  
...  

2011 ◽  
Vol 193 (22) ◽  
pp. 6331-6341 ◽  
Author(s):  
Disha Srivastava ◽  
Rebecca C. Harris ◽  
Christopher M. Waters

Vibrio choleraetransitions between aquatic environmental reservoirs and infection in the gastrointestinal tracts of human hosts. The second-messenger molecule cyclic di-GMP (c-di-GMP) and quorum sensing (QS) are important signaling systems that enableV. choleraeto alternate between these distinct environments by controlling biofilm formation and virulence factor expression. Here we identify a conserved regulatory mechanism inV. choleraethat integrates c-di-GMP and QS to control the expression of two transcriptional regulators:aphA, an activator of virulence gene expression and an important regulator of the quorum-sensing pathway, andvpsT, a transcriptional activator that induces biofilm formation. Surprisingly,aphAexpression was induced by c-di-GMP. Activation of bothaphAandvpsTby c-di-GMP requires the transcriptional activator VpsR, which binds to c-di-GMP. The VpsR binding site at each of these promoters overlaps with the binding site of HapR, the master QS regulator at high cell densities. Our results suggest thatV. choleraecombines information conveyed by QS and c-di-GMP to appropriately respond and adapt to divergent environments by modulating the expression of key transcriptional regulators.


2014 ◽  
Vol 14 (1) ◽  
pp. 180 ◽  
Author(s):  
Sara Sandrini ◽  
Fayez Alghofaili ◽  
Primrose Freestone ◽  
Hasan Yesilkaya

Sign in / Sign up

Export Citation Format

Share Document