Design and Analytical Evaluation of A High Resistance Sensitivity Bolometer Sensor Based on Plasmonic Metasurface Structure

Author(s):  
Abbas Hamouleh-Alipour ◽  
Ali Mir ◽  
Ali Farmani

Abstract Bolometer sensors are prominent and excellent choice in technology because they do not need cooling. The trade-off between high sensitivity, fast response time, and strong light absorption is a key important challenge in bolometer sensors. Here, the bolometric effect for a high resistance sensitivity plasmonic sensing of total and profile infusion of radiation is studied for the proposed bolometer sensor based on plasmonic multilayer structure at 26° C. In the present study, by generating strong coupling condition between incident wave and surface plasmon polaritons (SPPs), a very narrow absorption spectra with high figure of merit (FoM) is achieved. The analytical model and numerical simulation are fulfilled based on the transfer matrix method (TMM) and 3-D finite-difference time-domain (FDTD), respectively. The narrow absorption spectra that generate by strong coupling with SPPs heats the silver thin film that leads to variation in temperature and supports TE surface mode. This temperature change rectifies the resistance of the metal thin film by the bolometric effect. So, optical characteristics of the proposed metasurface bolometer sensor, including quality factor (Q), sensitivity, and figure of merit (FoM) are calculated that Max sensitivity, FoM, and Q are 17.2 RIU-1, 530 and 434.5, respectively. Finally, we analytically simulate the temperature coefficient of resistance (TCR) in terms of wavelength and refractive index of analyte (na) that this resistance change can be monitored by an external electric model. The proposed plasmonic multilayer configuration is a very compact footprint structure that achieved high resistance sensitivity and FoM in comparison with any previous reports. This proposed thermal, optical, and electric plasmonic metasurface bolometer sensor can be used in different applications such as biophysics, biology, and environmental science.

Author(s):  
Antonio Orozco ◽  
Elena Talanova ◽  
Anders Gilbertson ◽  
L.A. Knauss ◽  
Zhiyong Wang ◽  
...  

Abstract As integrated circuit packages become more complicated, the localization of defects becomes correspondingly more difficult. One particularly difficult class of defects to localize is high resistance (HR) defects. These defects include cracked traces, delaminated vias, C4 non-wet defects, PTH cracks, and any other package or interconnect structure that results in a signal line resistance change that exceeds the specification of the device. These defects can result in devices that do not run at full speed, are not reliable in the field, or simply do not work at all. The main approach for localizing these defects today is time domain reflectometry (TDR) [1]. TDR sends a short electrical pulse into the device and monitors the time to receive reflections. These reflections can correspond to shorts, opens, bends in a wire, normal interfaces between devices, or high resistance defects. Ultimately anything that produces an electrical impedance change will produce a TDR response. These signals are compared to a good part and require time consuming layer-by-layer deprocessing and comparison to a standard part. When complete, the localization is typically at best to within 200 microns. A new approach to isolating high resistance defects has been recently developed using current imaging. In recent years, current imaging through magnetic field detection has become a main-stream approach for short localization in the package [2] and is also heavily utilized for die level applications [3]. This core technology has been applied to the localization of high resistance defects. This paper will describe the approach, and give examples of test samples as well as results from actual yield failures.


2021 ◽  
Vol 3 ◽  
Author(s):  
Hiromasa Shimizu ◽  
Takahiro Ogura ◽  
Takumi Maeda ◽  
Shogo Suzuki

We show here the design, fabrication, and characterization of a wedge-shaped Au thin film with an enhanced figure of merit (FOM). This is achieved by using a reflectivity change in an attenuated total reflection (ATR) setup by slightly modulating the wavenumber of the surface plasmon polariton by means of the varying thickness of the Au thin film. The wedge-shaped Au thin film is equivalent to multiple surface plasmon resonance (SPR) transducers integrated in a single chip and was fabricated by an electron-beam evaporation process with the position of the shutter controlled during the deposition. The FOM, defined as the difference between the maximum and minimum values of the normalized reflectivity change (ΔR/R) divided by the corresponding difference of the incident angles, was 8.0-times larger than that based on the reflectivity R. Also, we demonstrated that the wedge-shaped Au thin film was able to detect ethanol gas at a concentration of 0.2%, corresponding to a refractive index change of 2 × 10−5, without any surface functionalization. Since the sensing signal can be obtained with a single image from the wedge-shaped Au thin film without precise thickness control of the metal thickness, no other materials or modulation equipment is necessary, and the sensing chip can be employed in simple and highly sensitive systems.


Author(s):  
Jun-Oh Shin ◽  
Tae-Hee Jung ◽  
Tae-Bum Kim ◽  
Sung-Chul Woo ◽  
Na-Ri Yun ◽  
...  

2020 ◽  
Vol 238 ◽  
pp. 05004
Author(s):  
Gabriel W. Castellanos ◽  
Shunsuke Murai ◽  
T.V. Raziman ◽  
Shaojun Wang ◽  
Mohammad Ramezani ◽  
...  

We demonstrate the strong coupling between excitons in organic molecules and all-dielectric metasurfaces formed by arrays of silicon nanoparticles supporting Mie surface lattice resonances (MSLRs). Compared to Mie resonances in individual nanoparticles, MSLRs have extended mode volumes and much larger quality factors, which enables to achieve collective strong coupling with very large coupling strengths and Rabi energies. Moreover, due to the electric and magnetic character of the MSLR given by the Mie resonance, we show that the hybridization of the exciton with the MSLR results in exciton-polaritons that inherit this character as well. Our results demonstrate the potential of all-dielectric metasurfaces as novel platform to investigate and manipulate exciton-polaritons in low-loss polaritonic devices.


2021 ◽  
Author(s):  
Akhila Kadyan ◽  
Anil Shaji ◽  
Jino George

In this letter, we investigated the modification of oscillator strength of an asymmetric stretching band of CS<sub>2</sub> by strong coupling to an infrared cavity photon. This is achieved by placing liquid CS<sub>2</sub> in a Fabry-Perot resonator and tune the cavity mode position to match with the molecular vibrational transition. Ultra-strong coupling improves the self-interaction of transition dipoles of asymmetric stretching band of CS<sub>2</sub> that resulted in an increase of its own oscillator strength. We experimentally proved this by taking the area ratio of asymmetric stretching and combination band by selectively coupling the former one. A non-linear increase in the oscillator strength of the asymmetric stretching band is observed upon varying the coupling strength. This is explained by a quantum mechanical model that predicts quadratic behavior under ultra-strong coupling condition. These findings will set up a new paradigm for understanding chemical reaction modification by vacuum field coupling.


Vacuum ◽  
2017 ◽  
Vol 139 ◽  
pp. 196-201 ◽  
Author(s):  
G. Womack ◽  
P.M. Kaminski ◽  
J.M. Walls

2022 ◽  
Author(s):  
Ye Ming Qing ◽  
Yongze Ren ◽  
Dangyuan Lei ◽  
Hui Feng Ma ◽  
Tie Jun Cui

Abstract Strong interaction between electromagnetic radiation and matter leads to the formation of hybrid light-matter states, making the absorption and emission behavior different from those of the uncoupled states. Strong coupling effect results in the famous Rabi splitting and the emergence of new polaritonic eigenmodes, exhibiting spectral anticrossing behavior and unique energy-transfer properties. In recent years, there has been a rapidly increasing number of works focusing on strong coupling between nanostructures and two-dimensional materials (2DMs), because of the exceptional properties and applications they demonstrate. Here, we review the significant recent advances and important developments of strong light-matter interactions in 2DMs-based nanostructures. We adopt the coupled oscillator model to describe the strong coupling and give an overview of various hybrid nanostructures to realize this regime, including graphene-based nanostructures, black phosphorus-based nanostructures, transition-metal dichalcogenides-based nanostructures, etc. In addition, we discuss potential applications that can benefit from these effects and conclude our review with a perspective on the future of this rapidly emerging field.


Plasmonics ◽  
2020 ◽  
Author(s):  
Chunyan Qiu ◽  
Shuaiwen Gan ◽  
Yuanjiang Xiang ◽  
Xiaoyu Dai

1947 ◽  
Vol 51 (443) ◽  
pp. 867-873
Author(s):  
C. R. Urwin ◽  
K. H. Swainger

Summary“Potential” leads are used to put strain gauge switches and leads in series with high resistance ratio arms in a modified Wheat-stone Bridge. Thus the effects of switch contact resistance change and temperature-resistance change in leads can be minimised to any desired values. The high resistance ratio arms allow coarse resistance changes at the measuring bridge to measure the small resistance change at the gauge due to strain.High potentials are applied to the bridge to minimise the effects of thermal e.m.f.Active gauges and the temperature compensating gauges are in circuit for only a few seconds while the measurement is made.


Sign in / Sign up

Export Citation Format

Share Document