Fault Isolation of High Resistance Defects Using Comparative Magnetic Field Imaging

Author(s):  
Antonio Orozco ◽  
Elena Talanova ◽  
Anders Gilbertson ◽  
L.A. Knauss ◽  
Zhiyong Wang ◽  
...  

Abstract As integrated circuit packages become more complicated, the localization of defects becomes correspondingly more difficult. One particularly difficult class of defects to localize is high resistance (HR) defects. These defects include cracked traces, delaminated vias, C4 non-wet defects, PTH cracks, and any other package or interconnect structure that results in a signal line resistance change that exceeds the specification of the device. These defects can result in devices that do not run at full speed, are not reliable in the field, or simply do not work at all. The main approach for localizing these defects today is time domain reflectometry (TDR) [1]. TDR sends a short electrical pulse into the device and monitors the time to receive reflections. These reflections can correspond to shorts, opens, bends in a wire, normal interfaces between devices, or high resistance defects. Ultimately anything that produces an electrical impedance change will produce a TDR response. These signals are compared to a good part and require time consuming layer-by-layer deprocessing and comparison to a standard part. When complete, the localization is typically at best to within 200 microns. A new approach to isolating high resistance defects has been recently developed using current imaging. In recent years, current imaging through magnetic field detection has become a main-stream approach for short localization in the package [2] and is also heavily utilized for die level applications [3]. This core technology has been applied to the localization of high resistance defects. This paper will describe the approach, and give examples of test samples as well as results from actual yield failures.

Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2510 ◽  
Author(s):  
Jae-Eun Park ◽  
Ga-Eun Yun ◽  
Dae-Ik Jang ◽  
Young-Keun Kim

Magnetorheological gel (MRG) is a smart material that can change its stiffness property by external magnetic field and has been applied as a smart rubber in suppressing vibration. Recent studies show that the electrical resistance of MRG also can be affected with external magnetic field. Thus, this study aimed to conduct analysis on MRG resistance variation due to external magnetic field with DC and AC input voltage. With an DC input voltage, the resistance change due to magnetic field was modeled. In addition, the capacitance variation of the material was observed. The impedance of MRG due to AC input voltage was analyzed and was observed that the impedance of MRG was affected by both the magnetic field and the input frequency. With the experiment data, the impedance modeling of MRG in frequency domain was derived. Based on experiment results, the performance and limitation of MRG as a magnetometer sensor are discussed.


Author(s):  
L. A. Knauss ◽  
B. M. Frazier ◽  
A. B. Cawthorne ◽  
E. Budiarto ◽  
R. Crandall ◽  
...  

Abstract With the arrival of flip-chip packaging, present tools and techniques are having increasing difficulty meeting failure-analysis needs. Recently a magneticfield imaging system has been used to localize shorts in buried layers of both packages and dies. Until now, these shorts have been powered directly through simple connections at the package. Power shorts are examples of direct shorts that can be powered through connections to Vdd and Vss at the package level. While power shorts are common types of failure, equally important are defects such as logic shorts, which cannot be powered through simple package connections. These defects must be indirectly activated by driving the part through a set of vectors. This makes the magnetic-field imaging process more complicated due to the large background currents present along with the defect current. Magnetic-field imaging is made possible through the use of a SQUID (Superconducting Quantum Interference Device), which is a very sensitive magnetic sensor that can image magnetic fields generated by magnetic materials or currents (such as those in an integrated circuit). The current-density distribution in the sample can then be calculated from the magnetic-field image revealing the locations of shorts and other current anomalies. Presented here is the application of a SQUID-based magnetic-field imaging system for isolation of indirect shorts. This system has been used to investigate shorts in two flip-chip-packaged SRAMs. Defect currents as small as 38 μA were imaged in a background of 1 A. The measurements were made using a lock-in thechnique and image subtraction. The magnetic-field image from one sample is compared with the results from a corresponding infrared-microscope image.


Author(s):  
K.C. Lee ◽  
J. Alton ◽  
M. Igarashi ◽  
S. Barbeau

Abstract Traditional time domain reflectometry (TDR) techniques employ time-based information to locate faults within packages with minimal references to internal structures. Here, we combine a novel and innovative technique, electro optical terahertz pulse reflectometry (EOTPR) [1], with full 3D device-under-test (DUT) modelling to quickly and nondestructively perform feature-based analysis. We demonstrate fault isolation to an accuracy of 10 ìm or better with respect to device features in an advanced integrated circuit (IC) package.


2018 ◽  
Author(s):  
Daechul Choi ◽  
Yoonseong Kim ◽  
Jongyun Kim ◽  
Han Kim

Abstract In this paper, we demonstrate cases for actual short and open failures in FCB (Flip Chip Bonding) substrates by using novel non-destructive techniques, known as SSM (Scanning Super-conducting Quantum Interference Device Microscopy) and Terahertz TDR (Time Domain Reflectometry) which is able to pinpoint failure locations. In addition, the defect location and accuracy is verified by a NIR (Near Infra-red) imaging system which is also one of the commonly used non-destructive failure analysis tools, and good agreement was made.


Author(s):  
A. Orozco ◽  
N.E. Gagliolo ◽  
C. Rowlett ◽  
E. Wong ◽  
A. Moghe ◽  
...  

Abstract The need to increase transistor packing density beyond Moore's Law and the need for expanding functionality, realestate management and faster connections has pushed the industry to develop complex 3D package technology which includes System-in-Package (SiP), wafer-level packaging, through-silicon-vias (TSV), stacked-die and flex packages. These stacks of microchips, metal layers and transistors have caused major challenges for existing Fault Isolation (FI) techniques and require novel non-destructive, true 3D Failure Localization techniques. We describe in this paper innovations in Magnetic Field Imaging for FI that allow current 3D mapping and extraction of geometrical information about current location for non-destructive fault isolation at every chip level in a 3D stack.


2018 ◽  
Author(s):  
Satish Kodali ◽  
Liangshan Chen ◽  
Yuting Wei ◽  
Tanya Schaeffer ◽  
Chong Khiam Oh

Abstract Optical beam induced resistance change (OBIRCH) is a very well-adapted technique for static fault isolation in the semiconductor industry. Novel low current OBIRCH amplifier is used to facilitate safe test condition requirements for advanced nodes. This paper shows the differences between the earlier and novel generation OBIRCH amplifiers. Ring oscillator high standby leakage samples are analyzed using the novel generation amplifier. High signal to noise ratio at applied low bias and current levels on device under test are shown on various samples. Further, a metric to demonstrate the SNR to device performance is also discussed. OBIRCH analysis is performed on all the three samples for nanoprobing of, and physical characterization on, the leakage. The resulting spots were calibrated and classified. It is noted that the calibration metric can be successfully used for the first time to estimate the relative threshold voltage of individual transistors in advanced process nodes.


Author(s):  
J. Gaudestad ◽  
V. Talanov ◽  
A. Orozco ◽  
M. Marchetti

Abstract In the past couple years, Space Domain Reflectometry (SDR) has become a mainstream method to locate open defects among the major semiconductor manufacturers. SDR injects a radio frequency (RF) signal into the open trace creating a standing wave with a node at the open location. The magnetic field generated by the standing wave is imaged with a SQUID sensor using RF electronics. In this paper, we show that SDR can be used to non-destructively locate high resistance failures in Micro LeadFrame Packages (MLP).


Author(s):  
Chi-Lin Huang ◽  
Yu Hsiang Shu

Abstract Conventional isolation techniques, such as Optical Beam Induced Resistance Change (OBIRCH) or photoemission microscopy (PEM) frequently fail to locate failure points when only applied to power pin of the semiconductor device. In this paper, a novel OBIRCH failure isolation technique is utilized to detect leakage failures. Different test conditions are presented to identify the differences in current when all input pins are pulled high in an OBIRCH system. In order to verify a failure point, it is necessary to perform electrical analysis of the suspected failure point in the failing sample. In general, Conductive Atomic Force Microscope (C-AFM) and a Nano-Prober is sufficient to provide the electrical data required for failure analysis. Experiment results, however, prove that this novel OBIRCH failure isolation technique is effective in locating the failure point, especially for leakage failures. The failure mechanism is illustrated using cross-sectional TEM.


Author(s):  
Teoh King Long ◽  
Ko Yin Fern

Abstract In time domain reflectometry (TDR), the main emphasis lies on the reflected waveform. Poor probing contact is one of the common problems in getting an accurate waveform. TDR probe normalization is essential before measuring any TDR waveforms. The advantages of normalization include removal of test setup errors in the original test pulse and the establishment of a measurement reference plane. This article presents two case histories. The first case is about a Plastic Ball Grid Array package consisting of 352 solder balls where the open failure mode was encountered at various terminals after reliability assessment. In the second, a three-digit display LED suspected of an electrical short failure was analyzed using TDR as a fault isolation tool. TDR has been successfully used to perform non-destructive fault isolation in assisting the routine failure analysis of open and short failure. It is shown to be accurate and reduces the time needed to identify fault locations.


Author(s):  
Lihong Cao ◽  
Manasa Venkata ◽  
Meng Yeow Tay ◽  
Wen Qiu ◽  
J. Alton ◽  
...  

Abstract Electro-optical terahertz pulse reflectometry (EOTPR) was introduced last year to isolate faults in advanced IC packages. The EOTPR system provides 10μm accuracy that can be used to non-destructively localize a package-level failure. In this paper, an EOTPR system is used for non-destructive fault isolation and identification for both 2D and 2.5D with TSV structure of flip-chip packages. The experimental results demonstrate higher accuracy of the EOTPR system in determining the distance to defect compared to the traditional time-domain reflectometry (TDR) systems.


Sign in / Sign up

Export Citation Format

Share Document