scholarly journals An Immunosensor for the Detection of Speckle-type Poz Domain Protein Based on Pioneering Jasmine-like Cu@l-asp Hybrid Nanoflowers and Palladium-platinum Nanoparticles.

Author(s):  
Song Yue ◽  
Kexin Sun ◽  
Siyuan Li ◽  
Yi Liu ◽  
Qihao Zhu ◽  
...  

Abstract In this paper, we first synthesis three-dimensional(3D) jasmine-like Cu@L-Asp inorganic-organic hybrid nanoflowers to load palladium-platinum nanoparticles as the signal enhancer in order to quantify intracellular speckle-type POZ domain protein (SPOP). Scanning electron microscope (SEM), fourier transform infrared (FT-IR), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS) analysis was used to characterize the newly synthesized materials. The newly formed Cu@L-Asp/Pd-PtNPs can catalyze the decomposition of hydrogen peroxide and exhibit excellent catalytic performance. When different concentration of SPOP is captured by SPOP antibody linked to the surface of Cu@L-Asp/Pd-Pt NPs, the current signal decreases with the increase concentration of SPOP. After optimization, the SPOP immunosensor exhibited a good linear response over a concentration range from 0.1 pg mL-1-1 ng mL-1. The proposed sensor demonstrates good stability, acceptable reproducibility and excellent selectivity to the SPOP in the presence of possible interfering substances and has great potential application for detecting other intracellular macromolecular substances.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Song Yue ◽  
Kexin Sun ◽  
Siyuan Li ◽  
Yi Liu ◽  
Qihao Zhu ◽  
...  

AbstractIn this paper, we first synthesis three-dimensional jasmine-like Cu@L-aspartic acid(L-ASP) inorganic–organic hybrid nanoflowers to load palladium-platinum nanoparticles (Pd–Pt NPs) as the signal enhancer in order to quantify intracellular speckle-type POZ domain protein. Scanning electron microscope, fourier transform infrared, energy dispersive spectrometer, X-ray photoelectron spectroscopy analysis was used to characterize the newly synthesized materials. The newly formed Cu@L-Asp/Pd-PtNPs can catalyze the decomposition of hydrogen peroxide and exhibit excellent catalytic performance. When different concentration of speckle-type POZ domain protein is captured by speckle-type POZ domain protein antibody linked to the surface of Cu@L-Asp/Pd–Pt NPs, the current signal decreases with the increase concentration of speckle-type POZ domain protein. After optimization, the speckle-type POZ domain protein immunosensor exhibited a good linear response over a concentration range from 0.1–1 ng mL−1 with a low detection limit of 19 fg mL−1. The proposed sensor demonstrates good stability within 28 days, acceptable reproducibility (RSD = 0.52%) and selectivity to the speckle-type POZ domain protein in the presence of possible interfering substances and has potential application for detecting other intracellular macromolecular substances.


2019 ◽  
Vol 6 (3) ◽  
pp. 181422
Author(s):  
Xingchen Liu ◽  
SuZhen Wang ◽  
Song Wang ◽  
Han Shi ◽  
Xiaolong Zhang ◽  
...  

The three-dimensional flower-like Bi 2 WO 6 was synthesized through a one-step microwave method (the reaction temperature was 434 K and the reaction took 10 min) with the assistance of ethanolamine (EA). The prepared samples were characterized by X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, ultraviolet–visible spectroscopy, PL, X-ray photoelectron spectroscopy and Brunauer–Emmett–Teller analysis. Methyl orange was used as target pollutant to evaluate the photocatalysis property of samples. Furthermore, the influence of the mechanism of EA on the structure and catalytic performance of Bi 2 WO 6 was discussed. The detailed characterizations revealed that the three-dimensional flower-like Bi 2 WO 6 was successfully synthesized with the assistance of EA. The results confirmed that EA significantly influenced the morphology of Bi 2 WO 6 products. The addition of EA can effectively alter the pressure of the reaction and improve the crystal phase and structure of Bi 2 WO 6 photocatalysts, enhancing the photocatalytic activity of samples and improving the photocatalytic efficiency. EA can serve as an assembling agent and structure-directing agent resulting in the formation of flower-like architectures. With the increase of the amount of EA, the as-prepared Bi 2 WO 6 sample gradually forms a flower-like structure, leading to a shorter time of light holes migrating to the surface of the catalyst. It makes the compound rate significantly decreased, and improves the photocatalytic efficiency of the sample.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 239
Author(s):  
Jian Zhang ◽  
Wei Yuan ◽  
Tian Xia ◽  
Chenghong Ao ◽  
Jiangqi Zhao ◽  
...  

Carbon aerogels (CA) derived from bamboo cellulose fibers were coupled with TiO2 to form CA/TiO2 hybrids, which exhibited extraordinary performance on the photo-catalytic degradation of methylene blue (MB). The structure and morphology of CA/TiO2 were characterized by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Raman spectrum. The CA displayed a highly porous and interconnected three-dimensional framework structure, while introducing the catalytic active sites of TiO2 onto the aerogel scaffold could remarkably enhance its photo-catalytic activity. The adsorption and photo-catalytic degradation of MB by the CA/TiO2 hybrid were investigated. The maximum adsorption capacity of CA/TiO2 for MB was 18.5 mg/g, which outperformed many similar materials reported in the literature. In addition, compared with other photo-catalysts, the present CA/TiO2 demonstrated superior photo-catalytic performance. Almost 85% of MB in 50 mL solution with a MB concentration of 10 mg/L could be effectively degraded by 15 mg CA/TiO2 in 300 min.


2014 ◽  
Vol 29 (2) ◽  
pp. 124-130 ◽  
Author(s):  
Yu-Cheng DU ◽  
Guang-Wei ZHENG ◽  
Qi MENG ◽  
Li-Ping WANG ◽  
Hai-Guang FAN ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Xiaoliang Liu ◽  
Jing Shi ◽  
Guang Yang ◽  
Jian Zhou ◽  
Chuanming Wang ◽  
...  

AbstractZeolite morphology is crucial in determining their catalytic activity, selectivity and stability, but quantitative descriptors of such a morphology effect are challenging to define. Here we introduce a descriptor that accounts for the morphology effect in the catalytic performances of H-ZSM-5 zeolite for C4 olefin catalytic cracking. A series of H-ZSM-5 zeolites with similar sheet-like morphology but different c-axis lengths were synthesized. We found that the catalytic activity and stability is improved in samples with longer c-axis. Combining time-resolved in-situ FT-IR spectroscopy with molecular dynamics simulations, we show that the difference in catalytic performance can be attributed to the anisotropy of the intracrystalline diffusive propensity of the olefins in different channels. Our descriptor offers mechanistic insight for the design of highly effective zeolite catalysts for olefin cracking.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 558
Author(s):  
Wenhui Zhu ◽  
Caiyun Zhang ◽  
Yali Chen ◽  
Qiliang Deng

Photothermal materials are attracting more and more attention. In this research, we synthesized a ferrocene-containing polymer with magnetism and photothermal properties. The resulting polymer was characterized by Fourier-transform infrared (FT-IR), vibrating sample magnetometer (VSM), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Its photo-thermocatalytic activity was investigated by choosing methylene blue (MB) as a model compound. The degradation percent of MB under an irradiated 808 nm laser reaches 99.5% within 15 min, and the degradation rate is 0.5517 min−1, which is 145 times more than that of room temperature degradation. Under irradiation with simulated sunlight, the degradation rate is 0.0092 min−1, which is approximately 2.5 times more than that of room temperature degradation. The present study may open up a feasible route to degrade organic pollutants.


2015 ◽  
Vol 5 (9) ◽  
pp. 4594-4601 ◽  
Author(s):  
Jinguo Wang ◽  
Gaoyang Yang ◽  
Li Cheng ◽  
Eun Woo Shin ◽  
Yong Men

MCr2O4 catalysts with three-dimensional ordered macroporous structures displayed superior catalytic activity for soot combustion to their bulk counterparts.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Buzuayehu Abebe ◽  
H. C. Ananda Murthy ◽  
Enyew Amare Zereffa

AbstractZinc oxide (ZnO) is a fascinating semiconductor material with many applications such as adsorption, photocatalysis, sensor, and antibacterial activities. By using a poly (vinyl alcohol) (PVA) polymer as a capping agent and metal oxides (iron and manganese) as a couple, the porous PVA-aided Zn/Fe/Mn ternary oxide nanocomposite material (PTMO-NCM) was synthesized. The thermal, optical, crystallinity, chemical bonding, porosity, morphological, charge transfer properties of the synthesized materials were confirmed by DTG/DSC, UV–Vis-DRS, XRD, FT-IR, BET, SEM-EDAX/TEM-HRTEM-SAED, and CV/EIS/amperometric analytical techniques, respectively. The PTMO-NCM showed an enhanced surface area and charge transfer capability, compared to ZnO. Using the XRD pattern and TEM image analysis, the crystalline size of the materials was confirmed to be in the nanometer range. The porosity and superior charge transfer capabilities of the PTMO-NCM were confirmed from the BET, HRTEM (IFFT)/SAED, and CV/EIS analysis. The adsorption kinetics (adsorption reaction/adsorption diffusion) and adsorption isotherm test confirmed the presence of a chemisorption type of adsorbate/methylene blue dye-adsorbent/PTMO-NCM interaction. The photocatalytic performance was tested on the Congo red and Acid Orange-8 dyes. The superior ascorbic acid sensing capability of the material was understood from CV and amperometric analysis. The noble antibacterial activities of the material were also confirmed on both gram-negative and gram-positive bacteria.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 290
Author(s):  
Paulette Gómez-López ◽  
José Ángel Salatti-Dorado ◽  
Daily Rodríguez-Padrón ◽  
Manuel Cano ◽  
Clemente G. Alvarado-Beltrán ◽  
...  

We report a new class of polyacrylonitrile (PAN)-based Co-N-doped carbon materials that can act as suitable catalyst for oxygen evolution reactions (OER). Different Co loadings were mechanochemically added into post-consumed PAN fibers. Subsequently, the samples were treated at 300 °C under air (PAN-A) or nitrogen (PAN-N) atmosphere to promote simultaneously the Co3O4 species and PAN cyclization. The resulting electrocatalysts were fully characterized and analyzed by X-ray diffraction (XRD) and photoelectron spectroscopy (XPS), transmission (TEM) and scanning electron (SEM) microscopies, as well as nitrogen porosimetry. The catalytic performance of the Co-N-doped carbon nanomaterials were tested for OER in alkaline environments. Cobalt-doped PAN-A samples showed worse OER electrocatalytic performance than their homologous PAN-N ones. The PAN-N/3% Co catalyst exhibited the lowest OER overpotential (460 mV) among all the Co-N-doped carbon nanocomposites, reaching 10 mA/cm2. This work provides in-depth insights on the electrocatalytic performance of metal-doped carbon nanomaterials for OER.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 878
Author(s):  
Krystyna Wnuczek ◽  
Andrzej Puszka ◽  
Łukasz Klapiszewski ◽  
Beata Podkościelna

This study presents the preparation and the thermo-mechanical characteristics of polymeric blends based on di(meth)acrylates monomers. Bisphenol A glycerolate diacrylate (BPA.GDA) or ethylene glycol dimethacrylate (EGDMA) were used as crosslinking monomers. Methyl methacrylate (MMA) was used as an active solvent in both copolymerization approaches. Commercial polycarbonate (PC) was used as a modifying soluble additive. The preparation of blends and method of polymerization by using UV initiator (Irqacure® 651) was proposed. Two parallel sets of MMA-based materials were obtained. The first included more harmless linear hydrocarbons (EGDMA + MMA), whereas the second included the usually used aromatic copolymers (BPA.GDA + MMA). The influence of different amounts of PC on the physicochemical properties was discussed in detail. Chemical structures of the copolymers were confirmed by attenuated total reflection–Fourier transform infrared (ATR/FT-IR) spectroscopy. Thermo-mechanical properties of the synthesized materials were investigated by means of differential scanning calorimetry (DSC), thermogravimetric (TG/DTG) analyses, and dynamic mechanical analysis (DMA). The hardness of the obtained materials was also tested. In order to evaluate the surface of the materials, their images were obtained with the use of atomic force microscopy (AFM).


Sign in / Sign up

Export Citation Format

Share Document