scholarly journals Multifunctional application of PVA-aided Zn–Fe–Mn coupled oxide nanocomposite

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Buzuayehu Abebe ◽  
H. C. Ananda Murthy ◽  
Enyew Amare Zereffa

AbstractZinc oxide (ZnO) is a fascinating semiconductor material with many applications such as adsorption, photocatalysis, sensor, and antibacterial activities. By using a poly (vinyl alcohol) (PVA) polymer as a capping agent and metal oxides (iron and manganese) as a couple, the porous PVA-aided Zn/Fe/Mn ternary oxide nanocomposite material (PTMO-NCM) was synthesized. The thermal, optical, crystallinity, chemical bonding, porosity, morphological, charge transfer properties of the synthesized materials were confirmed by DTG/DSC, UV–Vis-DRS, XRD, FT-IR, BET, SEM-EDAX/TEM-HRTEM-SAED, and CV/EIS/amperometric analytical techniques, respectively. The PTMO-NCM showed an enhanced surface area and charge transfer capability, compared to ZnO. Using the XRD pattern and TEM image analysis, the crystalline size of the materials was confirmed to be in the nanometer range. The porosity and superior charge transfer capabilities of the PTMO-NCM were confirmed from the BET, HRTEM (IFFT)/SAED, and CV/EIS analysis. The adsorption kinetics (adsorption reaction/adsorption diffusion) and adsorption isotherm test confirmed the presence of a chemisorption type of adsorbate/methylene blue dye-adsorbent/PTMO-NCM interaction. The photocatalytic performance was tested on the Congo red and Acid Orange-8 dyes. The superior ascorbic acid sensing capability of the material was understood from CV and amperometric analysis. The noble antibacterial activities of the material were also confirmed on both gram-negative and gram-positive bacteria.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Buzuayehu Abebe ◽  
H. C. Ananda Murthy ◽  
Enyew Amare Zereffa ◽  
You Qiang

The poly(vinyl alcohol)-assisted sol-gel-self-propagation route has been used for the synthesis of porous binary metal oxide nanocomposites (BMONCs) and ternary metal oxide nanocomposites (TMONCs). The effects of synthesis techniques, precursor’s type, amount of PVA loading, and precursor’s percentage were studied. The optical, chemical bonding, crystallinity, morphological, textural, and electrochemical properties of the synthesized materials were characterized by UV-vis-DRS/UV-vis, FT-IR, XRD, SEM/EDX and TEM/HRTEM/SAED, BET, and CV/EIS techniques, respectively. The porous nature of the materials was confirmed by SEM, BET, and SAED analytical techniques. Using XRD and TEM analysis, the approximate particle size of the materials was confirmed to be in the nanometer range (~7-70 nm). The EDX and HRTEM analysis was confirming the presence of predictable composition and actuality of the composites, respectively. Moving from bare ZnO to ternary nanocomposites, the great morphological, surface area, and electrochemical property enhancement was confirmed. The charge transfer capability order was obtained to be ZnO/Fe2O3/Mn2O3 > ZnO/Fe2O3 > ZnO/Mn2O3 > ZnO. The respective approximate electron transfer resistance value is 7, 25, 61, and 65 Ω. Therefore, this work can improve the toxicity towards solvent used, surface area to volume ratio, and aggregation/agglomeration problem and also enhance the charge transfer capability due to the heterojunction.


2021 ◽  
Vol 11 (4) ◽  
pp. 12178-12185

In this study, some thiazole-based pyrrolidine derivatives were synthesized, characterized by FT-IR and 1H NMR spectroscopic techniques, and evaluated as potential antibacterial agents. Their antibacterial activities were evaluated by broth microdilution method and expressed as minimum inhibitory concentration; against Escherichia coli, Salmonella typhimurium, Bacillus cereus, and Staphylococcus aureus. Cytotoxicity studies of synthesized compounds were also conducted to minimize the toxic effects on healthy mammalian cells. From synthesized compounds, 4-F-phenyl derivative compound (11) has been found to inhibit Gram-positive bacteria with minimum toxicity selectively.


2018 ◽  
Vol 21 (4) ◽  
pp. 271-280 ◽  
Author(s):  
Mohammad A. Ghasemzadeh ◽  
Mohammad H. Abdollahi-Basir ◽  
Zahra Elyasi

Aim and Objective: The multi-component condensation of benzil, primary amines, ammonium acetate and various aldehydes was efficiently catalyzed using cobalt oxide nanoparticles under ultrasonic irradiation. This approach describes an effective and facile method for the synthesis of some novel 1,2,4,5-tetrasubstituted imidazole derivatives with several advantages such as high yields and short reaction times and reusability of the catalyst. Moreover, the prepared heterocyclic compounds showed high antibacterial activity against some pathogenic strains. Materials and Method: The facile and efficient approaches for the preparation of Co3O4 nanoparticles were carried out by one step method. The synthesized heterogeneous nanocatalyst was characterized by spectroscopic analysis including EDX, FE-SEM, VSM, XRD and FT-IR analysis. The as-synthesized cobalt oxide nanoparticles showed paramagnetic behaviour in magnetic field. In addition, the catalytic influence of the nanocatalyst was examined in the one-pot reaction of primary amines, benzil, ammonium acetate and diverse aromatic aldehydes under ultrasonic irradiation. All of the 1,2,4,5-tetrasubstituted imidazoles were investigated and checked with m.p., 1H NMR, 13C NMR and FT-IR spectroscopy techniques. The antibacterial properties of the heterocycles were evaluated in vitro by the disk diffusion against pathogenic strains such as Escherichia coli (EC), Bacillus subtillis (BS), Staphylococcus aureus (SA), Salmonellatyphi (ST) and Shigella dysentrae (SD) species. Results: In this research cobalt oxide nanostructure was used as a robust and green catalyst in the some novel imidazoles. The average particle size measured from the FE-SEM image is found to be 20-30 nm which confirmed to the obtained results from XRD pattern. Various electron-donating and electron-withdrawing aryl aldehydes were efficiently reacted in the presence of Co3O4 nanoparticles. The role of the catalyst as a Lewis acid is promoting the reactions with the increase in the electrophilicity of the carbonyl and double band groups. To investigate the reusability of the catalyst, the model study was repeated using recovered cobalt oxide nanoparticles. The results showed that the nanocatalyst could be reused for five times with a minimal loss of its activity. Conclusion: We have developed an efficient and environmentally friendly method for the synthesis of some tetrasubstituted imidazoles via three-component reaction of benzil, primary amines, ammonium acetate and various aldehydes using Co3O4 NPs. The present approach suggests different benefits such as: excellent yields, short reaction times, simple workup procedure and recyclability of the magnetic nanocatalyst. The prepared 1,2,4,5-tetrasubstituted imidazoles revealed high antibacterial activities and can be useful in many biomedical applications.


Author(s):  
Devidas G. Anuse ◽  
Suraj N. Mali ◽  
Bapu R. Thorat ◽  
Ramesh S. Yamgar ◽  
Hemchandra K. Chaudhari

Background: Antimicrobial resistance is major global health problem, which is being rapidly deteriorating the quality of human health. Series of substituted N-(benzo[d]thiazol-2-yl)-2-(4-(6-fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl)acetamide (3a-j) were synthesized from substituted N-(benzo[d]thiazol-2-yl)-2-chloroacetamide/bromopropanamide (2a-j) and 6-fluoro-3-(piperidin-4-yl)benzo[d]isoxazole (2) and further evaluated for their docking properties and antimicrobial activity. Methods: All synthesized compounds were characterized by FT-IR, NMR and Mass spectral analysis. All compounds were allowed to dock against different antimicrobial targets having PDB ID: 1D7U and against common antifungal target having PDB ID: 1EA1. Results: The compounds 3d and 3h were showed good activity against Methicillin-resistant Staphylococcus aureus (MRSA, resistance Gram-positive bacteria). All synthesized compounds showed good to moderate activity against selected bacterial and fungal microbial strains. If we compared the actual in-vitro antimicrobial activity and in-silico molecular docking study, we found that molecules 3i and 3h were more potent than the others. Conclusion: Our current study would definitely pave the new way towards designing and synthesis of more potent 2-aminobenzothiazoles derivatives.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Reza Eivazzadeh-Keihan ◽  
Fateme Radinekiyan ◽  
Hooman Aghamirza Moghim Aliabadi ◽  
Sima Sukhtezari ◽  
Behnam Tahmasebi ◽  
...  

AbstractHerein, a novel nanobiocomposite scaffold based on modifying synthesized cross-linked terephthaloyl thiourea-chitosan hydrogel (CTT-CS hydrogel) substrate using the extracted silk fibroin (SF) biopolymer and prepared Mg(OH)2 nanoparticles was designed and synthesized. The biological capacity of this nanobiocomposite scaffold was evaluated by cell viability method, red blood cells hemolytic and anti-biofilm assays. According to the obtained results from 3 and 7 days, the cell viability of CTT-CS/SF/Mg(OH)2 nanobiocomposite scaffold was accompanied by a considerable increment from 62.5 to 89.6% respectively. Furthermore, its low hemolytic effect (4.5%), and as well, the high anti-biofilm activity and prevention of the P. aeruginosa biofilm formation confirmed its promising hemocompatibility and antibacterial activity. Apart from the cell viability, blood biocompatibility, and antibacterial activity of CTT-CS/SF/Mg(OH)2 nanobiocomposite scaffold, its structural features were characterized using spectral and analytical techniques (FT-IR, EDX, FE-SEM and TG). As well as, given the mechanical tests, it was indicated that the addition of SF and Mg(OH)2 nanoparticles to the CTT-CS hydrogel could improve its compressive strength from 65.42 to 649.56 kPa.


2021 ◽  
pp. 088391152110142
Author(s):  
Velu Gomathy ◽  
Venkatesan Manigandan ◽  
Narasimman Vignesh ◽  
Aavula Thabitha ◽  
Ramachandran Saravanan

Biofilms play a key role in infectious diseases, as they may form on the surface and persist after treatment with various antimicrobial agents. The Staphylococcus aureus, Klebsiella pneumoniae, S. typhimurium, P. aeruginosa, and Escherichia coli most frequently associated with medical devices. Chitosan sulphate from marine litter (SCH-MW) was extracted and the mineral components were determined using atomic absorption spectroscopy (AAS). The degree of deacetylation (DA) of SCH was predicted 50% and 33.3% in crab and shrimp waste respectively. The elucidation of the structure of the SCH-MW was portrayed using FT-IR and 1H-NMR spectroscopy. The molecular mass of SCH-MW was determined with Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF). The teratogenicity of SCH-MW was characterized by the zebrafish embryo (ZFE) model. Antimicrobial activity of SCH-MW was tested with the agar well diffusion method; the inhibitory effect of SCH-MW on biofilm formation was assessed in 96 flat well polystyrene plates. The result revealed that a low concentration of crab-sulfated chitosan inhibited bacterial growth and significantly reduced the anti-biofilm activity of gram-negative and gram-positive bacteria relatively to shrimp. It is potentially against the biofilm formation of pathogenic bacteria.


Author(s):  
R. N. V. C. Virinthorn ◽  
M. Chandrasekaran ◽  
K. Wang ◽  
K. L. Goh

AbstractWe described a technique of a post-process stage to partially remove the poly(vinyl alcohol) (PVA) binder in Poly(lactic-co-glycolic acid) (PLGA) dental scaffolds. The scaffolds were exposed to ultrasonic waves while immersed in an ethanol/acetone solvent mixture that possessed both polar and nonpolar properties. A factorial experiment was conducted in which the scaffolds were treated to three levels of sonication power (pW): 0, 20% (22 W) and 40% (44 W), and soaking duration (t): 5, 15, and 30 min. The treated scaffolds were characterized by FT-IR, optical microscopy, and mechanical (compressive) testing. FT-IR revealed that the amount of PVA decreased with increasing pW and t. Two-way ANOVA revealed that increasing pW and t, respectively, resulted in increasing scaffold surface area to volume (SVR). Sonication and solvent caused structural damage (i.e., unevenness) on the scaffold surface, but the damage was minimal at 20% pW and 30 min. The optimal values of pW and t resulting in enhanced fracture strength, strain and toughness were 20% and 30 min, respectively, which corroborated the findings of minimal structural damage. However, sonication had no significant effects on the scaffold stiffness. Mechanistic analysis of the effects of sonication predicted that the ultrasonic energy absorbed by the scaffold was sufficient to disrupt the van Der Waals bonds between the PVA and PLGA but not high enough to disrupt the covalent bonds within the PLGA. This technique is promising as it can partially remove the PVA from the scaffold, and mitigate problematic issues down the line, such as thermal degradation during sterilization, and undue delay/variability in biodegradation.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 878
Author(s):  
Krystyna Wnuczek ◽  
Andrzej Puszka ◽  
Łukasz Klapiszewski ◽  
Beata Podkościelna

This study presents the preparation and the thermo-mechanical characteristics of polymeric blends based on di(meth)acrylates monomers. Bisphenol A glycerolate diacrylate (BPA.GDA) or ethylene glycol dimethacrylate (EGDMA) were used as crosslinking monomers. Methyl methacrylate (MMA) was used as an active solvent in both copolymerization approaches. Commercial polycarbonate (PC) was used as a modifying soluble additive. The preparation of blends and method of polymerization by using UV initiator (Irqacure® 651) was proposed. Two parallel sets of MMA-based materials were obtained. The first included more harmless linear hydrocarbons (EGDMA + MMA), whereas the second included the usually used aromatic copolymers (BPA.GDA + MMA). The influence of different amounts of PC on the physicochemical properties was discussed in detail. Chemical structures of the copolymers were confirmed by attenuated total reflection–Fourier transform infrared (ATR/FT-IR) spectroscopy. Thermo-mechanical properties of the synthesized materials were investigated by means of differential scanning calorimetry (DSC), thermogravimetric (TG/DTG) analyses, and dynamic mechanical analysis (DMA). The hardness of the obtained materials was also tested. In order to evaluate the surface of the materials, their images were obtained with the use of atomic force microscopy (AFM).


2006 ◽  
Vol 50 (6) ◽  
pp. 2261-2264 ◽  
Author(s):  
Hee-Soo Park ◽  
Hyun-Joo Kim ◽  
Min-Jung Seol ◽  
Dong-Rack Choi ◽  
Eung-Chil Choi ◽  
...  

ABSTRACT DW-224a showed the most potent in vitro activity among the quinolone compounds tested against clinical isolates of gram-positive bacteria. Against gram-negative bacteria, DW-224a was slightly less active than the other fluoroquinolones. The in vivo activities of DW-224a against gram-positive bacteria were more potent than those of other quinolones.


2016 ◽  
Vol 852 ◽  
pp. 979-983
Author(s):  
Ping Rui Meng ◽  
Liang Bo Li

Sodium acrylate (NaAA) and acrylamide (AM) were grafted onto poly (vinyl alcohol) (PVA) using potassium persulfate as an initiator, Graft copolymerization namely poly (vinyl alcohol)-g-poly (acrylamide/sodium acrylate) (PVA-g-PAM/SAC). The poly (vinyl alcohol)-g-poly (vinylamine/sodium acrylate) (PVAMC) was prepraed by Hofmann rearrangement.The PVAMC homogeneous membrane was characterized by fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM).The water resistance of the PVAMC membranes is the best when pH of the PVAMC solutions was 4, at that time the numbers of-NH3+ and-COO- groups trended to be equal, so the isoelectric point was pH=4. At 90 °C the pervaporation of PVAMC composite membrane was tested and showed that the separation factor and the permeate flux were about 1001 and 1341 g/(m2·h) for 90wt% ethanol aqueous solution, and they were about 1297 and 1040 g/(m2·h) for 90wt% isopropanol aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document