scholarly journals Explainable artificial intelligence for predicting remission in patients with rheumatoid arthritis treated with biologics

Author(s):  
Bon San Koo ◽  
Seongho Eun ◽  
Kichul Shin ◽  
Hyemin Yoon ◽  
Chaelin Hong ◽  
...  

Abstract Background: We developed a model to predict remissions in patients treated with biologic disease-modifying anti-rheumatic drugs (bDMARDs) and to identify important clinical features associated with remission using explainable artificial intelligence (XAI).Methods: We gathered the follow-up data of 1204 patients treated with bDMARDs (etanercept, adalimumab, golimumab, infliximab, abatacept, and tocilizumab) from the Korean College of Rheumatology Biologics and Targeted Therapy Registry. Remission was predicted at one-year follow-up using baseline clinical data obtained at the time of enrollment. Machine learning methods (e.g., lasso, ridge, support vector machine, random forest, and XGBoost) were used for the predictions. The Shapley additive explanation (SHAP) value was used for interpretability of the predictions.Results: The ranges for accuracy and area under the receiver operating characteristic of the newly developed machine learning model for predicting remission were 52.8%–72.9% and 0.511–0.694, respectively. The Shapley plot in XAI showed that the impacts of the variables on predicting remission differed for each bDMARD. The most important features were age for adalimumab, rheumatoid factor for etanercept, erythrocyte sedimentation rate for infliximab and golimumab, disease duration for abatacept, and C-reactive protein for tocilizumab, with mean SHAP values of -0.250, -0.234, -0.514, -0.227, -0.804, and 0.135, respectively.Conclusions: Our proposed machine learning model successfully identified clinical features that were predictive of remission in each of the bDMARDs. This approach may be useful for improving treatment outcomes by identifying clinical information related to remissions in patients with rheumatoid arthritis.

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Bon San Koo ◽  
Seongho Eun ◽  
Kichul Shin ◽  
Hyemin Yoon ◽  
Chaelin Hong ◽  
...  

Abstract Background We developed a model to predict remissions in patients treated with biologic disease-modifying anti-rheumatic drugs (bDMARDs) and to identify important clinical features associated with remission using explainable artificial intelligence (XAI). Methods We gathered the follow-up data of 1204 patients treated with bDMARDs (etanercept, adalimumab, golimumab, infliximab, abatacept, and tocilizumab) from the Korean College of Rheumatology Biologics and Targeted Therapy Registry. Remission was predicted at 1-year follow-up using baseline clinical data obtained at the time of enrollment. Machine learning methods (e.g., lasso, ridge, support vector machine, random forest, and XGBoost) were used for the predictions. The Shapley additive explanation (SHAP) value was used for interpretability of the predictions. Results The ranges for accuracy and area under the receiver operating characteristic of the newly developed machine learning model for predicting remission were 52.8–72.9% and 0.511–0.694, respectively. The Shapley plot in XAI showed that the impacts of the variables on predicting remission differed for each bDMARD. The most important features were age for adalimumab, rheumatoid factor for etanercept, erythrocyte sedimentation rate for infliximab and golimumab, disease duration for abatacept, and C-reactive protein for tocilizumab, with mean SHAP values of − 0.250, − 0.234, − 0.514, − 0.227, − 0.804, and 0.135, respectively. Conclusions Our proposed machine learning model successfully identified clinical features that were predictive of remission in each of the bDMARDs. This approach may be useful for improving treatment outcomes by identifying clinical information related to remissions in patients with rheumatoid arthritis.


2020 ◽  
Vol 9 (2) ◽  
pp. 343 ◽  
Author(s):  
Arash Kia ◽  
Prem Timsina ◽  
Himanshu N. Joshi ◽  
Eyal Klang ◽  
Rohit R. Gupta ◽  
...  

Early detection of patients at risk for clinical deterioration is crucial for timely intervention. Traditional detection systems rely on a limited set of variables and are unable to predict the time of decline. We describe a machine learning model called MEWS++ that enables the identification of patients at risk of escalation of care or death six hours prior to the event. A retrospective single-center cohort study was conducted from July 2011 to July 2017 of adult (age > 18) inpatients excluding psychiatric, parturient, and hospice patients. Three machine learning models were trained and tested: random forest (RF), linear support vector machine, and logistic regression. We compared the models’ performance to the traditional Modified Early Warning Score (MEWS) using sensitivity, specificity, and Area Under the Curve for Receiver Operating Characteristic (AUC-ROC) and Precision-Recall curves (AUC-PR). The primary outcome was escalation of care from a floor bed to an intensive care or step-down unit, or death, within 6 h. A total of 96,645 patients with 157,984 hospital encounters and 244,343 bed movements were included. Overall rate of escalation or death was 3.4%. The RF model had the best performance with sensitivity 81.6%, specificity 75.5%, AUC-ROC of 0.85, and AUC-PR of 0.37. Compared to traditional MEWS, sensitivity increased 37%, specificity increased 11%, and AUC-ROC increased 14%. This study found that using machine learning and readily available clinical data, clinical deterioration or death can be predicted 6 h prior to the event. The model we developed can warn of patient deterioration hours before the event, thus helping make timely clinical decisions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jianwei Xiao ◽  
Rongsheng Wang ◽  
Xu Cai ◽  
Zhizhong Ye

Rheumatoid arthritis (RA) is an incurable disease that afflicts 0.5–1.0% of the global population though it is less threatening at its early stage. Therefore, improved diagnostic efficiency and prognostic outcome are critical for confronting RA. Although machine learning is considered a promising technique in clinical research, its potential in verifying the biological significance of gene was not fully exploited. The performance of a machine learning model depends greatly on the features used for model training; therefore, the effectiveness of prediction might reflect the quality of input features. In the present study, we used weighted gene co-expression network analysis (WGCNA) in conjunction with differentially expressed gene (DEG) analysis to select the key genes that were highly associated with RA phenotypes based on multiple microarray datasets of RA blood samples, after which they were used as features in machine learning model validation. A total of six machine learning models were used to validate the biological significance of the key genes based on gene expression, among which five models achieved good performances [area under curve (AUC) >0.85], suggesting that our currently identified key genes are biologically significant and highly representative of genes involved in RA. Combined with other biological interpretations including Gene Ontology (GO) analysis, protein–protein interaction (PPI) network analysis, as well as inference of immune cell composition, our current study might shed a light on the in-depth study of RA diagnosis and prognosis.


2020 ◽  
Author(s):  
Chunbo Kang ◽  
Xubin Li ◽  
Xiaoqian Chi ◽  
Yabin Yang ◽  
Haifeng Shan ◽  
...  

Abstract BACKGROUND Accurate preoperative prediction of complicated appendicitis (CA) could help selecting optimal treatment and reducing risks of postoperative complications. The study aimed to develop a machine learning model based on clinical symptoms and laboratory data for preoperatively predicting CA.METHODS 136 patients with clinicopathological diagnosis of acute appendicitis were retrospectively included in the study. The dataset was randomly divided (94: 42) into training and testing set. Predictive models using individual and combined selected clinical and laboratory data features were built separately. Three combined models were constructed using logistic regression (LR), support vector machine (SVM) and random forest (RF) algorithms. The CA prediction performance was evaluated with Receiver Operating Characteristic (ROC) analysis, using the area under the curve (AUC), sensitivity, specificity and accuracy factors.RESULTS The features of the abdominal pain time, nausea and vomiting, the highest temperature, high sensitivity-CRP (hs-CRP) and procalcitonin (PCT) had significant differences in the CA prediction (P<0.001). The ability to predict CA by individual feature was low (AUC<0.8). The prediction by combined features was significantly improved. The AUC of the three models (LR, SVM and RF) in the training set and the testing set were 0.805, 0.888, 0.908 and 0.794, 0.895, 0.761, respectively. The SVM-based model showed a better performance for CA prediction. RF had a higher AUC in the training set, but its poor efficiency in the testing set indicated a poor generalization ability.CONCLUSIONS The SVM machine learning model applying clinical and laboratory data can well predict CA preoperatively which could assist diagnosis in resource limited settings.


BMJ Open ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. e048482
Author(s):  
Liu Zhang ◽  
Ya Ru Yan ◽  
Shi Qi Li ◽  
Hong Peng Li ◽  
Ying Ni Lin ◽  
...  

ObjectivesObstructive sleep apnoea (OSA) has received much attention as a risk factor for perioperative complications and 68.5% of OSA patients remain undiagnosed before surgery. Faciocervical characteristics may screen OSA for Asians due to smaller upper airways compared with Caucasians. Thus, our study aimed to explore a machine-learning model to screen moderate to severe OSA based on faciocervical and anthropometric measurements.DesignA cross-sectional study.SettingData were collected from the Shanghai Jiao Tong University School of Medicine affiliated Ruijin Hospital between February 2019 and August 2020.ParticipantsA total of 481 Chinese participants were included in the study.Primary and secondary outcome(1) Identification of moderate to severe OSA with apnoea–hypopnoea index 15 events/hour and (2) Verification of the machine-learning model.ResultsSex-Age-Body mass index (BMI)-maximum Interincisal distance-ratio of Height to thyrosternum distance-neck Circumference-waist Circumference (SABIHC2) model was set up. The SABIHC2 model could screen moderate to severe OSA with an area under the curve (AUC)=0.832, the sensitivity of 0.916 and specificity of 0.749, and performed better than the STOP-BANG (snoring, tiredness, observed apnea, high blood pressure, BMI, age, neck circumference, and male gender) questionnaire, which showed AUC=0.631, the sensitivity of 0.487 and specificity of 0.772. Especially for asymptomatic patients (Epworth Sleepiness Scale <10), the SABIHC2 model demonstrated better predictive ability compared with the STOP-BANG questionnaire, with AUC (0.824 vs 0.530), sensitivity (0.892 vs 0.348) and specificity (0.755 vs 0.809).ConclusionThe SABIHC2 machine-learning model provides a simple and accurate assessment of moderate to severe OSA in the Chinese population, especially for those without significant daytime sleepiness.


Author(s):  
S. Sasikala ◽  
S. J. Subhashini ◽  
P. Alli ◽  
J. Jane Rubel Angelina

Machine learning is a technique of parsing data, learning from that data, and then applying what has been learned to make informed decisions. Deep learning is actually a subset of machine learning. It technically is machine learning and functions in the same way, but it has different capabilities. The main difference between deep and machine learning is, machine learning models become well progressively, but the model still needs some guidance. If a machine learning model returns an inaccurate prediction, then the programmer needs to fix that problem explicitly, but in the case of deep learning, the model does it by itself. Automatic car driving system is a good example of deep learning. On other hand, Artificial Intelligence is a different thing from machine learning and deep learning. Deep learning and machine learning both are the subsets of AI.


2007 ◽  
Vol 01 (04) ◽  
pp. 441-457 ◽  
Author(s):  
STEVEN BETHARD ◽  
JAMES H. MARTIN ◽  
SARA KLINGENSTEIN

This research proposes and evaluates a linguistically motivated approach to extracting temporal structure from text. Pairs of events in a verb-clause construction were considered, where the first event is a verb and the second event is the head of a clausal argument to that verb. All pairs of events in the TimeBank that participated in verb-clause constructions were selected and annotated with the labels BEFORE, OVERLAP and AFTER. The resulting corpus of 895 event-event temporal relations was then used to train a machine learning model. Using a combination of event-level features like tense and aspect with syntax-level features like the paths through the syntactic tree, support vector machine (SVM) models were trained which could identify new temporal relations with 89.2% accuracy. High accuracy models like these are a first step towards automatic extraction of temporal structure from text.


Sign in / Sign up

Export Citation Format

Share Document