scholarly journals Hydrogen sulfide and potassium synergistically induce osmotic stress tolerance through regulation of H+-ATPase activity and sugar metabolism in tomato seedlings

Author(s):  
Manzer H. Siddiqui ◽  
Soumya Mukherjee ◽  
Saud Alamri ◽  
Yanbo Hu ◽  
Abdullah Alamri ◽  
...  

Abstract Potassium (K) is an essential macronutrient which is known to regulate key metabolic processes, modulate enzyme activity and plays a decisive role in osmotic adjustment in plants. Present work evaluates the role of K in the regulation of endogenous hydrogen sulfide (H2S) signaling in modulating the tolerance of tomato (Solanum lycopersicum L. Mill.) seedlings to osmotic stress. The findings reveal that exposure of seedlings to 15% (w/v) polyethylene glycol 8000 (PEG) led to a substantial decrease in leaf K content which was associated with reduced H+-ATPase activity. Exogenous application of K to the stressed seedlings significantly improved endogenous K content. Treatment with sodium orthovanadate (SOV, PM H+-ATPase inhibitor) and tetraethylammonium chloride (TEA, K channel blocker) suggests that exogenous K stimulated H+-ATPase activity that further regulated endogenous K content in tomato seedlings subjected to osmotic stress. Moreover, reduction in H+-ATPase activity by hypotaurine (H2S scavenger) substantiates the role of endogenous H2S in the regulation of H+-ATPase activity. Elevation in endogenous K content enhanced the biosynthesis of hydrogen sulfide (H2S) through enhancing the synthesis of cysteine, the H2S precursor. Synergistic action of H2S and K effectively neutralized osmotic stress by regulating sugar metabolism that resulted in osmotic adjustment, as witnessed by reduced water loss and improved hydration level of the stressed seedlings. Cross talk of H2S and K also assisted the seedlings in the activation of antioxidant enzymes that controlled the generation of reactive oxygen species and led to the protection against oxidative stress. The integrative role of H2S and K signaling was validated using hypotaurine (H2S scavenger) and TEA (K channel blocker) which weakened the protection against osmotic stress induced impairments. In conclusion, exogenous K and endogenous H2S regulate H+-ATPase activity which plays a decisive role in the maintenance of endogenous K homeostasis. Thus, present work reveals that K and H2S crosstalk is essential for modulation of osmotic stress tolerance in tomato seedlings.

1995 ◽  
Vol 269 (3) ◽  
pp. H805-H811 ◽  
Author(s):  
S. Najibi ◽  
R. A. Cohen

Endothelium-dependent relaxations to acetylcholine remain normal in the carotid artery of hypercholesterolemic rabbits, but unlike endothelium-dependent relaxations of normal rabbits, they are inhibited by charybdotoxin, a specific blocker of Ca(2+)-dependent K+ channels. Because nitric oxide (NO) is the mediator of endothelium-dependent relaxation and can activate Ca(2+)-dependent K+ channels directly or via guanosine 3',5'-cyclic monophosphate, the present study investigated the role of Ca(2+)-dependent K+ channels in relaxations caused by NO, sodium nitroprusside, and 8-bromoguanosine 3',5'-cyclic monophosphate (8-Brc-GMP) in hypercholesterolemic rabbit carotid artery. Isometric tension was measured in rabbit carotid artery denuded of endothelium from normal and hypercholesterolemic rabbits which were fed 0.5% cholesterol for 12 wk. Under control conditions, relaxations to all agents were similar in normal and hypercholesterolemic rabbit arteries. Charybdotoxin had no significant effect on relaxations of normal arteries to NO, sodium nitroprusside, or 8-BrcGMP, but the Ca(2+)-dependent K+ channel blocker significantly inhibited the relaxations caused by each of these agents in the arteries from hypercholesterolemic rabbits. By contrast, relaxations to the calcium channel blocker nifedipine were potentiated to a similar extent by charybdotoxin in both groups. In addition, arteries from hypercholesterolemic rabbits relaxed less than normal to sodium nitroprusside when contracted with depolarizing potassium solution. These results indicate that although nitrovasodilator relaxations are normal in the hypercholesterolemic rabbit carotid artery, they are mediated differently, and to a greater extent, by Ca(2+)-dependent K+ channels. These data also suggest that K+ channel-independent mechanism(s) are impaired in hypercholesterolemia.


2003 ◽  
Vol 69 (1) ◽  
pp. 154-161 ◽  
Author(s):  
Rozenn Gardan ◽  
Ophélie Duché ◽  
Sabine Leroy-Sétrin ◽  
Jean Labadie

ABSTRACT Listeria monocytogenes is a food-borne pathogen with the ability to grow under conditions of high osmolarity. In a previous study, we reported the identification of 12 proteins showing high induction after salt stress. One of these proteins is highly similar to the general stress protein Ctc of Bacillus subtilis. In this study, induction of Ctc after salt stress was confirmed at the transcriptional level by using RNA slot blot experiments. To explore the role of the ctc gene product in resistance to stresses, we constructed a ctc insertional mutant. No difference in growth was observed between the wild-type strain LO28 and the ctc mutant either in rich medium after osmotic or heat stress or in minimal medium after heat stress. However, in minimal medium after osmotic stress, the growth rate of the mutant was increased by a factor of 2. Moreover, electron microscopy analysis showed impaired morphology of the mutant grown under osmotic stress conditions in minimal medium. Addition of the osmoprotectant glycine betaine to the medium completely abolished the osmotic sensitivity phenotype of the ctc mutant. Altogether, these results suggest that the Ctc protein of L. monocytogenes is involved in osmotic stress tolerance in the absence of any osmoprotectant in the medium.


Euphytica ◽  
2013 ◽  
Vol 193 (1) ◽  
pp. 101-120 ◽  
Author(s):  
Minh Luan Nguyen ◽  
Goon-Bo Kim ◽  
Sun-Hee Hyun ◽  
Seok-Young Lee ◽  
Chae-Young Lee ◽  
...  

2010 ◽  
Vol 76 (10) ◽  
pp. 3177-3186 ◽  
Author(s):  
Yanhe Zhang ◽  
Yanping Zhang ◽  
Yan Zhu ◽  
Shaoming Mao ◽  
Yin Li

ABSTRACT Previously, we have shown that glutathione can protect Lactococcus lactis against oxidative stress and acid stress. In this study, we show that glutathione taken up by L. lactis SK11 can protect this organism against osmotic stress. When exposed to 5 M NaCl, L. lactis SK11 cells containing glutathione exhibited significantly improved survival compared to the control cells. Transmission electron microscopy showed that the integrity of L. lactis SK11 cells containing glutathione was maintained for at least 24 h, whereas autolysis of the control cells occurred within 2 h after exposure to this osmotic stress. Comparative proteomic analyses using SK11 cells containing or not containing glutathione that were exposed or not exposed to osmotic stress were performed. The results revealed that 21 of 29 differentially expressed proteins are involved in metabolic pathways, mainly sugar metabolism. Several glycolytic enzymes of L. lactis were significantly upregulated in the presence of glutathione, which might be the key for improving the general stress resistance of a strain. Together with the results of previous studies, the results of this study demonstrated that glutathione plays important roles in protecting L. lactis against multiple environmental stresses; thus, glutathione can be considered a general protectant for improving the robustness and stability of dairy starter cultures.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10879 ◽  
Author(s):  
Muhammad Asyraf Mohd Amnan ◽  
Teen-Lee Pua ◽  
Su-Ee Lau ◽  
Boon Chin Tan ◽  
Hisateru Yamaguchi ◽  
...  

Drought is one of the severe environmental stresses threatening agriculture around the globe. Nitric oxide plays diverse roles in plant growth and defensive responses. Despite a few studies supporting the role of nitric oxide in plants under drought responses, little is known about its pivotal molecular amendment in the regulation of stress signaling. In this study, a label-free nano-liquid chromatography-mass spectrometry approach was used to determine the effects of sodium nitroprusside (SNP) on polyethylene glycol (PEG)-induced osmotic stress in banana roots. Plant treatment with SNP improved plant growth and reduced the percentage of yellow leaves. A total of 30 and 90 proteins were differentially identified in PEG+SNP against PEG and PEG+SNP against the control, respectively. The majority of proteins differing between them were related to carbohydrate and energy metabolisms. Antioxidant enzyme activities, such as superoxide dismutase and ascorbate peroxidase, decreased in SNP-treated banana roots compared to PEG-treated banana. These results suggest that the nitric oxide-induced osmotic stress tolerance could be associated with improved carbohydrate and energy metabolism capability in higher plants.


Life Sciences ◽  
1994 ◽  
Vol 55 (11) ◽  
pp. PL217-PL223 ◽  
Author(s):  
Jun Tamaoki ◽  
Etsuko Tagaya ◽  
Atsushi Chiyotani ◽  
Isao Yamawaki ◽  
Kimio Konno

Sign in / Sign up

Export Citation Format

Share Document