scholarly journals Osmotic stress in banana is relieved by exogenous nitric oxide

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10879 ◽  
Author(s):  
Muhammad Asyraf Mohd Amnan ◽  
Teen-Lee Pua ◽  
Su-Ee Lau ◽  
Boon Chin Tan ◽  
Hisateru Yamaguchi ◽  
...  

Drought is one of the severe environmental stresses threatening agriculture around the globe. Nitric oxide plays diverse roles in plant growth and defensive responses. Despite a few studies supporting the role of nitric oxide in plants under drought responses, little is known about its pivotal molecular amendment in the regulation of stress signaling. In this study, a label-free nano-liquid chromatography-mass spectrometry approach was used to determine the effects of sodium nitroprusside (SNP) on polyethylene glycol (PEG)-induced osmotic stress in banana roots. Plant treatment with SNP improved plant growth and reduced the percentage of yellow leaves. A total of 30 and 90 proteins were differentially identified in PEG+SNP against PEG and PEG+SNP against the control, respectively. The majority of proteins differing between them were related to carbohydrate and energy metabolisms. Antioxidant enzyme activities, such as superoxide dismutase and ascorbate peroxidase, decreased in SNP-treated banana roots compared to PEG-treated banana. These results suggest that the nitric oxide-induced osmotic stress tolerance could be associated with improved carbohydrate and energy metabolism capability in higher plants.

2021 ◽  
Vol 5 (4) ◽  
pp. 846-853
Author(s):  
Fikret YAŞAR ◽  
Özlem ÜZAL

The purpose of the study was to determine the relationship between the messenger molecule Nitric oxide (NO) and antioxidative enzyme (SOD: Superoxide Dismutase; CAT: Catalase; APX: Ascorbate Peroxidase) activities in some metabolic changes that occur under the effect of drought stress in plants, to determine the possible roles of Nitric Oxide and to obtain complementary information. The experiment conducted in a controlled environment, and plant were cultured in containers containing Hoagland nutrient solution. For drought stress application, 10% Polyethylene Glycol (PEG 6000) was added to the nutrient solution, which is equivalent to -0.40 MPa osmotic potential. Before the drought stress is applied, pepper seedlings of Demre cv were pre-treated with different doses of Sodium Nitroprusside (SNP) and Carboxy-PTIO (potassium salt) (cPTIO) (SNP 0.01, SNP 1, SNP 100 and SNP 0.01 + cPTIO, SNP + cPTIO, SNP 100+ cPTIO). On the 10th day of the drought application, the growth parameters of the plants; the plant fresh weights and their Antioxidative Enzyme Activities (SOD, CAT, APX) were determined. In terms of plant growth parameters, both plant growth and antioxidant anzyme activities of plants pretreated with 0.01 and 1 doses of SNP were lower than the high dose of SNP and the PEG application without pretreatment. The reason for the low enzyme activities in these applications can be attributed to factors such as the excess accumulation of organic acids such as proline in the cells of the plants and the decrease in H2O2 and O-2 levels in the presence of SNP.


2019 ◽  
Vol 20 (4) ◽  
pp. 825 ◽  
Author(s):  
Hafiz Jhanzab ◽  
Abdul Razzaq ◽  
Yamin Bibi ◽  
Farhat Yasmeen ◽  
Hisateru Yamaguchi ◽  
...  

Production and utilization of nanoparticles (NPs) are increasing due to their positive and stimulating effects on biological systems. Silver (Ag) NPs improve seed germination, photosynthetic efficiency, plant growth, and antimicrobial activities. In this study, the effects of chemo-blended Ag NPs on wheat were investigated using the gel-free/label-free proteomic technique. Morphological analysis revealed that chemo-blended Ag NPs resulted in the increase of shoot length, shoot fresh weight, root length, and root fresh weight. Proteomic analysis indicated that proteins related to photosynthesis and protein synthesis were increased, while glycolysis, signaling, and cell wall related proteins were decreased. Proteins related to redox and mitochondrial electron transport chain were also decreased. Glycolysis associated proteins such as glyceraldehyde-3-phosphate dehydrogenase increased as well as decreased, while phosphoenol pyruvate carboxylase was decreased. Antioxidant enzyme activities such as superoxide dismutase, catalase, and peroxidase were promoted in response to the chemo-blended Ag NPs. These results suggested that chemo-blended Ag NPs promoted plant growth and development through regulation of energy metabolism by suppression of glycolysis. Number of grains/spike, 100-grains weight, and yield of wheat were stimulated with chemo-blended Ag NPs. Morphological study of next generational wheat plants depicted normal growth, and no toxic effects were observed. Therefore, morphological, proteomic, yield, and next generation results revealed that chemo-blended Ag NPs may promote plant growth and development through alteration in plant metabolism.


2019 ◽  
Vol 20 (3) ◽  
pp. 489 ◽  
Author(s):  
Carla Cioni ◽  
Elisa Angiulli ◽  
Mattia Toni

The involvement of nitric oxide (NO) in the modulation of teleost osmoresponsive circuits is suggested by the facts that NO synthase enzymes are expressed in the neurosecretory systems and may be regulated by osmotic stimuli. The present paper is an overview on the research suggesting a role for NO in the central modulation of hormone release in the hypothalamo-neurohypophysial and the caudal neurosecretory systems of teleosts during the osmotic stress response. Active NOS enzymes are constitutively expressed by the magnocellular and parvocellular hypophysiotropic neurons and the caudal neurosecretory neurons of teleosts. Moreover, their expression may be regulated in response to the osmotic challenge. Available data suggests that the regulatory role of NO appeared early during vertebrate phylogeny and the neuroendocrine modulation by NO is conservative. Nonetheless, NO seems to have opposite effects in fish compared to mammals. Indeed, NO exerts excitatory effects on the electrical activity of the caudal neurosecretory neurons, influencing the amount of peptides released from the urophysis, while it inhibits hormone release from the magnocellular neurons in mammals.


2003 ◽  
Vol 69 (1) ◽  
pp. 154-161 ◽  
Author(s):  
Rozenn Gardan ◽  
Ophélie Duché ◽  
Sabine Leroy-Sétrin ◽  
Jean Labadie

ABSTRACT Listeria monocytogenes is a food-borne pathogen with the ability to grow under conditions of high osmolarity. In a previous study, we reported the identification of 12 proteins showing high induction after salt stress. One of these proteins is highly similar to the general stress protein Ctc of Bacillus subtilis. In this study, induction of Ctc after salt stress was confirmed at the transcriptional level by using RNA slot blot experiments. To explore the role of the ctc gene product in resistance to stresses, we constructed a ctc insertional mutant. No difference in growth was observed between the wild-type strain LO28 and the ctc mutant either in rich medium after osmotic or heat stress or in minimal medium after heat stress. However, in minimal medium after osmotic stress, the growth rate of the mutant was increased by a factor of 2. Moreover, electron microscopy analysis showed impaired morphology of the mutant grown under osmotic stress conditions in minimal medium. Addition of the osmoprotectant glycine betaine to the medium completely abolished the osmotic sensitivity phenotype of the ctc mutant. Altogether, these results suggest that the Ctc protein of L. monocytogenes is involved in osmotic stress tolerance in the absence of any osmoprotectant in the medium.


2014 ◽  
Vol 7 (5) ◽  
pp. 773-791 ◽  
Author(s):  
Rossella Fasano ◽  
Nathalie Gonzalez ◽  
Alessandra Tosco ◽  
Fabrizio Dal Piaz ◽  
Teresa Docimo ◽  
...  

2021 ◽  
Author(s):  
Manzer H. Siddiqui ◽  
Soumya Mukherjee ◽  
Saud Alamri ◽  
Yanbo Hu ◽  
Abdullah Alamri ◽  
...  

Abstract Potassium (K) is an essential macronutrient which is known to regulate key metabolic processes, modulate enzyme activity and plays a decisive role in osmotic adjustment in plants. Present work evaluates the role of K in the regulation of endogenous hydrogen sulfide (H2S) signaling in modulating the tolerance of tomato (Solanum lycopersicum L. Mill.) seedlings to osmotic stress. The findings reveal that exposure of seedlings to 15% (w/v) polyethylene glycol 8000 (PEG) led to a substantial decrease in leaf K content which was associated with reduced H+-ATPase activity. Exogenous application of K to the stressed seedlings significantly improved endogenous K content. Treatment with sodium orthovanadate (SOV, PM H+-ATPase inhibitor) and tetraethylammonium chloride (TEA, K channel blocker) suggests that exogenous K stimulated H+-ATPase activity that further regulated endogenous K content in tomato seedlings subjected to osmotic stress. Moreover, reduction in H+-ATPase activity by hypotaurine (H2S scavenger) substantiates the role of endogenous H2S in the regulation of H+-ATPase activity. Elevation in endogenous K content enhanced the biosynthesis of hydrogen sulfide (H2S) through enhancing the synthesis of cysteine, the H2S precursor. Synergistic action of H2S and K effectively neutralized osmotic stress by regulating sugar metabolism that resulted in osmotic adjustment, as witnessed by reduced water loss and improved hydration level of the stressed seedlings. Cross talk of H2S and K also assisted the seedlings in the activation of antioxidant enzymes that controlled the generation of reactive oxygen species and led to the protection against oxidative stress. The integrative role of H2S and K signaling was validated using hypotaurine (H2S scavenger) and TEA (K channel blocker) which weakened the protection against osmotic stress induced impairments. In conclusion, exogenous K and endogenous H2S regulate H+-ATPase activity which plays a decisive role in the maintenance of endogenous K homeostasis. Thus, present work reveals that K and H2S crosstalk is essential for modulation of osmotic stress tolerance in tomato seedlings.


Euphytica ◽  
2013 ◽  
Vol 193 (1) ◽  
pp. 101-120 ◽  
Author(s):  
Minh Luan Nguyen ◽  
Goon-Bo Kim ◽  
Sun-Hee Hyun ◽  
Seok-Young Lee ◽  
Chae-Young Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document