scholarly journals Multisensory cueing facilitates naming in aphasia

2020 ◽  
Author(s):  
Klaudia Grechuta ◽  
Belén Rubio Ballester ◽  
Rosa Espín Munné ◽  
Teresa Usabiaga Bernal ◽  
Begoña Molina Hervás ◽  
...  

Abstract Background: Impaired naming is a ubiquitous symptom in all types of aphasia, which often adversely impacts independence, quality of life, and recovery of affected individuals. Previous research has demonstrated that naming can be facilitated by phonemic and semantic cueing strategies that are largely incorporated into the treatment of anomic disturbances. Beneficial effects of cueing, whereby naming becomes faster and more accurate, are often attributed to the priming mechanisms occurring within the distributed language network. Objective: We proposed and explored two novel cueing techniques: (1) Silent Visuomotor Cues (SVC), which provided articulatory information of target words presented in the form of silent videos, and (2) Semantic Auditory Cues (SAC), which consisted of acoustic information semantically relevant to target words (ringing for “telephone”). Grounded in neurophysiological evidence, we hypothesized that both SVC and SAC might aid communicative effectiveness possibly by triggering activity in perceptual and semantic language regions, respectively. Methods: Ten participants with chronic non-fluent aphasia were recruited for a longitudinal clinical intervention. Participants were split into dyads (i.e., five pairs of two participants) and required to engage in a turn-based peer-to-peer language game using the Rehabilitation Gaming System for aphasia (RGSa). The objective of the RGSa sessions was to practice communicative acts, such as making a request. We administered SVCs and SACs in a pseudorandomized manner at the moment when the active player selected the object to be requested from the interlocutor. For the analysis, we compared the times from selection to the reception of the desired object between cued and non-cued trials. Results: Naming accuracy, as measured by a standard clinical scale, significantly improved for all stimuli at each evaluation point, including the follow-up. Moreover, the results yielded beneficial effects of both SVC and SAC cues on word naming, especially at the early intervention sessions when the exposure to the target lexicon was infrequent. Conclusions. This study supports the efficacy of the proposed cueing strategies which could be integrated into the clinic or mobile technology to aid naming even at the chronic stages of aphasia. These findings are consistent with sensorimotor accounts of language processing, suggesting a coupling between language, motor, and semantic brain regions. Trial registration: NCT02928822. Registered 30 May 2016

Author(s):  
Klaudia Grechuta ◽  
Belén Rubio Ballester ◽  
Rosa Espín Munné ◽  
Teresa Usabiaga Bernal ◽  
Begoña Molina Hervás ◽  
...  

Abstract Background Impaired naming is a ubiquitous symptom in all types of aphasia, which often adversely impacts independence, quality of life, and recovery of affected individuals. Previous research has demonstrated that naming can be facilitated by phonological and semantic cueing strategies that are largely incorporated into the treatment of anomic disturbances. Beneficial effects of cueing, whereby naming becomes faster and more accurate, are often attributed to the priming mechanisms occurring within the distributed language network. Objective We proposed and explored two novel cueing techniques: (1) Silent Visuomotor Cues (SVC), which provided articulatory information of target words presented in the form of silent videos, and (2) Semantic Auditory Cues (SAC), which consisted of acoustic information semantically relevant to target words (ringing for “telephone”). Grounded in neurophysiological evidence, we hypothesized that both SVC and SAC might aid communicative effectiveness possibly by triggering activity in perceptual and semantic language regions, respectively. Methods Ten participants with chronic non-fluent aphasia were recruited for a longitudinal clinical intervention. Participants were split into dyads (i.e., five pairs of two participants) and required to engage in a turn-based peer-to-peer language game using the Rehabilitation Gaming System for aphasia (RGSa). The objective of the RGSa sessions was to practice communicative acts, such as making a request. We administered SVCs and SACs in a pseudorandomized manner at the moment when the active player selected the object to be requested from the interlocutor. For the analysis, we compared the times from selection to the reception of the desired object between cued and non-cued trials. Results Naming accuracy, as measured by a standard clinical scale, significantly improved for all stimuli at each evaluation point, including the follow-up. Moreover, the results yielded beneficial effects of both SVC and SAC cues on word naming, especially at the early intervention sessions when the exposure to the target lexicon was infrequent. Conclusions This study supports the efficacy of the proposed cueing strategies which could be integrated into the clinic or mobile technology to aid naming even at the chronic stages of aphasia. These findings are consistent with sensorimotor accounts of language processing, suggesting a coupling between language, motor, and semantic brain regions. Trial registration NCT02928822. Registered 30 May 2016.


2020 ◽  
Author(s):  
Klaudia Grechuta ◽  
Belén Rubio Ballester ◽  
Rosa Espín Munné ◽  
Teresa Usabiaga Bernal ◽  
Begoña Molina Hervás ◽  
...  

Abstract Background: Impaired naming is a ubiquitous symptom in all types of aphasia, which often adversely impacts independence, quality of life, and recovery of affected individuals. Previous research has demonstrated that naming can be facilitated by phonological and semantic cueing strategies that are largely incorporated into the treatment of anomic disturbances. Beneficial effects of cueing, whereby naming becomes faster and more accurate, are often attributed to the priming mechanisms occurring within the distributed language network. Objective: We proposed and explored two novel cueing techniques: (1) Silent Visuomotor Cues (SVC), which provided articulatory information of target words presented in the form of silent videos, and (2) Semantic Auditory Cues (SAC), which consisted of acoustic information semantically relevant to target words (ringing for “telephone”). Grounded in neurophysiological evidence, we hypothesized that both SVC and SAC might aid communicative effectiveness possibly by triggering activity in perceptual and semantic language regions, respectively.Methods: Ten participants with chronic non-fluent aphasia were recruited for a longitudinal clinical intervention. Participants were split into dyads (i.e., five pairs of two participants) and required to engage in a turn-based peer-to-peer language game using the Rehabilitation Gaming System for aphasia (RGSa). The objective of the RGSa sessions was to practice communicative acts, such as making a request. We administered SVCs and SACs in a pseudorandomized manner at the moment when the active player selected the object to be requested from the interlocutor. For the analysis, we compared the times from selection to the reception of the desired object between cued and non-cued trials.Results: Naming accuracy, as measured by a standard clinical scale, significantly improved for all stimuli at each evaluation point, including the follow-up. Moreover, the results yielded beneficial effects of both SVC and SAC cues on word naming, especially at the early intervention sessions when the exposure to the target lexicon was infrequent. Conclusions. This study supports the efficacy of the proposed cueing strategies which could be integrated into the clinic or mobile technology to aid naming even at the chronic stages of aphasia. These findings are consistent with sensorimotor accounts of language processing, suggesting a coupling between language, motor, and semantic brain regions. Trial registration: NCT02928822. Registered 30 May 2016


Author(s):  
Rohan Pandey ◽  
Vaibhav Gautam ◽  
Ridam Pal ◽  
Harsh Bandhey ◽  
Lovedeep Singh Dhingra ◽  
...  

BACKGROUND The COVID-19 pandemic has uncovered the potential of digital misinformation in shaping the health of nations. The deluge of unverified information that spreads faster than the epidemic itself is an unprecedented phenomenon that has put millions of lives in danger. Mitigating this ‘Infodemic’ requires strong health messaging systems that are engaging, vernacular, scalable, effective and continuously learn the new patterns of misinformation. OBJECTIVE We created WashKaro, a multi-pronged intervention for mitigating misinformation through conversational AI, machine translation and natural language processing. WashKaro provides the right information matched against WHO guidelines through AI, and delivers it in the right format in local languages. METHODS We theorize (i) an NLP based AI engine that could continuously incorporate user feedback to improve relevance of information, (ii) bite sized audio in the local language to improve penetrance in a country with skewed gender literacy ratios, and (iii) conversational but interactive AI engagement with users towards an increased health awareness in the community. RESULTS A total of 5026 people who downloaded the app during the study window, among those 1545 were active users. Our study shows that 3.4 times more females engaged with the App in Hindi as compared to males, the relevance of AI-filtered news content doubled within 45 days of continuous machine learning, and the prudence of integrated AI chatbot “Satya” increased thus proving the usefulness of an mHealth platform to mitigate health misinformation. CONCLUSIONS We conclude that a multi-pronged machine learning application delivering vernacular bite-sized audios and conversational AI is an effective approach to mitigate health misinformation. CLINICALTRIAL Not Applicable


2021 ◽  
Author(s):  
Przemysław Adamczyk ◽  
Martin Jáni ◽  
Tomasz S. Ligeza ◽  
Olga Płonka ◽  
Piotr Błądziński ◽  
...  

AbstractFigurative language processing (e.g. metaphors) is commonly impaired in schizophrenia. In the present study, we investigated the neural activity and propagation of information within neural circuits related to the figurative speech, as a neural substrate of impaired conventional metaphor processing in schizophrenia. The study included 30 schizophrenia outpatients and 30 healthy controls, all of whom were assessed with a functional Magnetic Resonance Imaging (fMRI) and electroencephalography (EEG) punchline-based metaphor comprehension task including literal (neutral), figurative (metaphorical) and nonsense (absurd) endings. The blood oxygenation level-dependent signal was recorded with 3T MRI scanner and direction and strength of cortical information flow in the time course of task processing was estimated with a 64-channel EEG input for directed transfer function. The presented results revealed that the behavioral manifestation of impaired figurative language in schizophrenia is related to the hypofunction in the bilateral fronto-temporo-parietal brain regions (fMRI) and various differences in effective connectivity in the fronto-temporo-parietal circuit (EEG). Schizophrenia outpatients showed an abnormal pattern of connectivity during metaphor processing which was related to bilateral (but more pronounced at the left hemisphere) hypoactivation of the brain. Moreover, we found reversed lateralization patterns, i.e. a rightward-shifted pattern during metaphor processing in schizophrenia compared to the control group. In conclusion, the presented findings revealed that the impairment of the conventional metaphor processing in schizophrenia is related to the bilateral brain hypofunction, which supports the evidence on reversed lateralization of the language neural network and the existence of compensatory recruitment of alternative neural circuits in schizophrenia.


2021 ◽  
Vol 6 (2) ◽  
pp. 48
Author(s):  
Elisa Innocenzi ◽  
Ida Cariati ◽  
Emanuela De Domenico ◽  
Erika Tiberi ◽  
Giovanna D’Arcangelo ◽  
...  

Aerobic exercise (AE) is known to produce beneficial effects on brain health by improving plasticity, connectivity, and cognitive functions, but the underlying molecular mechanisms are still limited. Neurexins (Nrxns) are a family of presynaptic cell adhesion molecules that are important in synapsis formation and maturation. In vertebrates, three-neurexin genes (NRXN1, NRXN2, and NRXN3) have been identified, each encoding for α and β neurexins, from two independent promoters. Moreover, each Nrxns gene (1–3) has several alternative exons and produces many splice variants that bind to a large variety of postsynaptic ligands, playing a role in trans-synaptic specification, strength, and plasticity. In this study, we investigated the impact of a continuous progressive (CP) AE program on alternative splicing (AS) of Nrxns on two brain regions: frontal cortex (FC) and hippocampus. We showed that exercise promoted Nrxns1–3 AS at splice site 4 (SS4) both in α and β isoforms, inducing a switch from exon-excluded isoforms (SS4−) to exon-included isoforms (SS4+) in FC but not in hippocampus. Additionally, we showed that the same AE program enhanced the expression level of other genes correlated with synaptic function and plasticity only in FC. Altogether, our findings demonstrated the positive effect of CP AE on FC in inducing molecular changes underlying synaptic plasticity and suggested that FC is possibly a more sensitive structure than hippocampus to show molecular changes.


ANALES RANM ◽  
2018 ◽  
Vol 135 (135(02)) ◽  
pp. 41-46
Author(s):  
J.A. Hinojosa ◽  
E.M. Moreno ◽  
P. Ferré ◽  
M.A. Pozo

Up to date the study of the relationship between language and emotion has received little attention from researchers. In the current work we will summarize evidence coming from the fields of developmental psychology and affective neurolinguistics. The results from different studies indicate that learning emotional language has its own idiosyncrasy. Also, the emotional content of words, sentences and texts modulates several levels of language processing, including phonological, lexico-semantic and morpho-syntactic aspects of language comprehension and production. Finally, the interactions between language and emotion involve the activation of several brain regions linked to distinct affective and linguistics processes, like parts of frontal and temporal cortices or subcortical structures such as the amygdala. Overall, the results of these studies clearly show that emotional content determines certain aspects of how we acquire and process language.


2014 ◽  
Author(s):  
Evie Malaia ◽  
Thomas M Talavage ◽  
Ronnie B Wilbur

Prior studies investigating cortical processing in Deaf signers suggest that life-long experience with sign language and/or auditory deprivation may alter the brain’s anatomical structure and the function of brain regions typically recruited for auditory processing (Emmorey et al., 2010; Pénicaud, et al., 2012 inter alia). We report the first investigation of the task-negative network in Deaf signers and its functional connectivity – the temporal correlations among spatially remote neurophysiological events. We show that Deaf signers manifest increased functional connectivity between posterior cingulate/precuneus and left medial temporal gyrus (MTG), but also inferior parietal lobe and medial temporal gyrus in the right hemisphere- areas that have been found to show functional recruitment specifically during sign language processing. These findings suggest that the organization of the brain at the level of inter-network connectivity is likely affected by experience with processing visual language, although sensory deprivation could be another source of the difference. We hypothesize that connectivity alterations in the task negative network reflect predictive/automatized processing of the visual signal.


2021 ◽  
Author(s):  
Paula Ortiz-Romero ◽  
Gustavo Egea ◽  
Luis A Pérez-Jurado ◽  
Victoria Campuzano

AbstractWilliams-Beuren syndrome (WBS) is a rare neurodevelopmental disorder characterized by a distinctive cognitive phenotype for which there currently are not any effective treatments. We investigated the progression of behavioral deficits present in CD (complete deletion) mice, a rodent model of WBS, after chronic treatment with curcumin, verapamil and a combination of both. These compounds have been proven to have beneficial effects over different cognitive aspects of various murine models and thus, may have neuroprotective effects in WBS. Treatment was administered orally dissolved in drinking water. A set of behavioral tests demonstrated the efficiency of combinatorial treatment. Some histological and molecular analyses were performed to analyze the effects of treatment and its underlying mechanism in CD mice. Behavioral improvement correlates with the molecular recovery of several affected pathways regarding MAPK signaling, in tight relation with the control of synaptic transmission. Moreover, CD mice showed an increased activated microglia density in different brain regions, which was prevented by treatment. Therefore, results show that treatment prevented behavioral deficits by recovering altered gene expression in cortex of CD mice, reducing activated microglia and normalizing Bdnf expression levels. These findings unravel the mechanisms underlying the beneficial effects of this novel treatment on behavioral deficits observed in CD mice, and suggest that the combination of curcumin and verapamil could be a potential candidate to treat the cognitive impairments in WBS patients.


1926 ◽  
Vol 4 (2) ◽  
pp. 186-195 ◽  
Author(s):  
GERT BONNIER

1. The time of development at 25°C. up to the moment of pupation is found to be for females and males respectively 116.62 ± 0.19 and 116.78 ± 0.20 hours. During the pupal stage the two times are 111.36 ± 0.15 and 115.46 ± 0.13 hours. 2. At 30° C. the corresponding figures are (in the same order): 99.95 ± 0.49, 103.37 ± 0.43, 78±15 ± 0.50 and 84.26 ± 0.34 hours. 3. These figures show that there is a statistical significance in the differences of the times of development of the two sexes for both the periods at 30°C. but only for the pupal stage at 25° C. It is pointed out that the fact that the longer time of male development as compared with female development at 25° C. is confined to the pupal stage, may be correlated with the other fact that the essential parts of the secondary sexual characters are developed during this stage. 4. It is shown that there is a negative correlation between the pre-pupal and pupal times of development, indicating that the longer the first time is, the shorter is, as a rule, the other time and vice versa. 5. With the aid of statistical methods it is shown that the shortening of the time of development at 30°C. as compared with the time at 25° C. is much more pronounced for the pupal than for the pre-pupal stage. 6. This last fact is discussed and it is emphasised that the ordinary methods of studying the influence of temperature on development are too rough to be of more than of a descriptive value, the only way of getting a deeper insight into the processes of development by temperature studies being the separate studies of a number of short intervals.


2021 ◽  
Author(s):  
Maarten Bot ◽  
Anne-Fleur van Rootselaari ◽  
Vincent Odekerken ◽  
Joke Dijk ◽  
Rob M A de Bie ◽  
...  

Abstract BACKGROUND Dentato-rubro-thalamic tract (DRT) deep brain stimulation (DBS) suppresses tremor in essential tremor (ET) patients. However, DRT depiction through tractography can vary depending on the included brain regions. Moreover, it is unclear which section of the DRT is optimal for DBS. OBJECTIVE To evaluate deterministic DRT tractography and tremor control in DBS for ET. METHODS After DBS surgery, DRT tractography was conducted in 37 trajectories (20 ET patients). Per trajectory, 5 different DRT depictions with various regions of interest (ROI) were constructed. Comparison resulted in a DRT depiction with highest correspondence to intraoperative tremor control. This DRT depiction was subsequently used for evaluation of short-term postoperative adverse and beneficial effects. RESULTS Postoperative optimized DRT tractography employing the ROI motor cortex, posterior subthalamic area (PSA), and ipsilateral superior cerebellar peduncle and dentate nucleus best corresponded with intraoperative trajectories (92%) and active DBS contacts (93%) showing optimal tremor control. DRT tractography employing a red nucleus or ventral intermediate nucleus of the thalamus (VIM) ROI often resulted in a more medial course. Optimal stimulation was located in the section between VIM and PSA. CONCLUSION This optimized deterministic DRT tractography strongly correlates with optimal tremor control. This technique is readily implementable for prospective evaluation in DBS target planning for ET.


Sign in / Sign up

Export Citation Format

Share Document