scholarly journals Genome-Wide Identification and Analysis of Class III Peroxidases in Betula pendula

2021 ◽  
Author(s):  
Kewei Cai ◽  
Huixin Liu ◽  
Song Chen ◽  
Yi Liu ◽  
Xiyang Zhao ◽  
...  

Abstract Background: Class III peroxidases (POD) proteins are widely present in the plant kingdom that are involved in a broad range of physiological processes including stress responses and lignin polymerization throughout the plant life cycle. However, little is known about the POD genes in Betula pendula, although it has been characterized in Arabidopsis, rice, poplar, maize and Chinese pear. The POD genes remain to be determined in Betula pendula.Results: A total of 90 nonredundant POD genes were identified in Betula pendula. (designated BpPODs). These POD genes were divided into twelve groups based on their phylogenetic relationships. The BpPODs are unevenly distributed on the 14 chromosomes. In addition, some BpPODs were located sequentially in tandem on chromosomes, inferred that tandem duplication contributes to the expansion of the POD gene family in Betula pendula. Analysis of the distribution of conserved domains of BpPOD proteins showed that all these proteins contain highly conserved motifs. We also investigated their expression patterns in different tissues, the results show that some BpPODs might play significant roles in root, xylem, leaf and flower. Furthermore, under low temperature conditions, some BpPODs showed different expression patterns at different times. Conclusions: Comprehensive study of the POD genes suggests that their functional diversity during Betula pendula growth and development. Our findings provide a basis for further functional analysis on POD gene family in Betula pendula.

2020 ◽  
Author(s):  
Kewei Cai ◽  
Song Chen ◽  
Xiyang Zhao ◽  
Su Chen

Abstract Background: Class III peroxidases (POD) proteins are widely present in the plant kingdom that are involved in a broad range of physiological processes including stress responses and lignin polymerization throughout the plant life cycle. However, little is known about the POD genes in Betula pendula, although it has been characterized in Arabidopsis, rice and maize. The POD genes remain to be determined in Betula pendula.Results: A total of 90 nonredundant POD genes were identified in Betula pendula. (designated BpPODs). These POD genes were divided into twelve groups based on their phylogenetic relationships. The BpPODs are unevenly distributed on the 14 chromosomes. In addition, some BpPOD genes were located sequentially in tandem on chromosomes, inferred that tandem duplication contributes to the expansion of the POD genes family in Betula pendula. Analysis of the distribution of conserved domains of BpPOD proteins showed that all these proteins contain highly conserved motifs. We also investigated their expression patterns in different tissues, the results show that some BpPOD genes might play significant roles in root, xylem, leaf and flower. Furthermore, under low temperature conditions, some BpPOD genes showed different expression patterns at different times.Conclusions: Comprehensive study of the POD genes suggests that their functional diversity during Betula pendula growth and development. Our findings provide a basis for further functional analysis on POD genes family in Betula pendula.


2020 ◽  
Author(s):  
Kewei Cai ◽  
Song Chen ◽  
Yi Liu ◽  
Xiyang Zhao ◽  
Su Chen

Abstract Background: Class III peroxidases (POD) proteins are widely present in the plant kingdom that are involved in a broad range of physiological processes including stress responses and lignin polymerization throughout the plant life cycle. However, little is known about the POD genes in Betula pendula, although it has been characterized in Arabidopsis, rice, poplar, maize and Chinese pear. The POD genes remain to be determined in Betula pendula.Results: A total of 90 nonredundant POD genes were identified in Betula pendula. (designated BpPODs). These POD genes were divided into twelve groups based on their phylogenetic relationships. The BpPODs are unevenly distributed on the 14 chromosomes. In addition, some BpPODs were located sequentially in tandem on chromosomes, inferred that tandem duplication contributes to the expansion of the POD gene family in Betula pendula. Analysis of the distribution of conserved domains of BpPOD proteins showed that all these proteins contain highly conserved motifs. We also investigated their expression patterns in different tissues, the results show that some BpPODs might play significant roles in root, xylem, leaf and flower. Furthermore, under low temperature conditions, some BpPODs showed different expression patterns at different times. Conclusions: Comprehensive study of the POD genes suggests that their functional diversity during Betula pendula growth and development. Our findings provide a basis for further functional analysis on POD gene family in Betula pendula.


2020 ◽  
Author(s):  
Kewei Cai ◽  
Song Chen ◽  
Yi Liu ◽  
Xiyang Zhao ◽  
Su Chen

Abstract Background: Class III peroxidases (POD) proteins are widely present in the plant kingdom that are involved in a broad range of physiological processes including stress responses and lignin polymerization throughout the plant life cycle. However, little is known about the POD genes in Betula pendula , although it has been characterized in Arabidopsis , rice and maize. The POD genes remain to be determined in Betula pendula . Results : A total of 90 nonredundant POD genes were identified in Betula pendula . (designated BpPODs ). These POD genes were divided into twelve groups based on their phylogenetic relationships. The BpPODs are unevenly distributed on the 14 chromosomes. In addition, some BpPOD genes were located sequentially in tandem on chromosomes, inferred that tandem duplication contributes to the expansion of the POD genes family in Betula pendula . Analysis of the distribution of conserved domains of BpPOD proteins showed that all these proteins contain highly conserved motifs. We also investigated their expression patterns in different tissues, the results show that some BpPOD genes might play significant roles in root, xylem, leaf and flower. Furthermore, under low temperature conditions, some BpPOD genes showed different expression patterns at different times. Conclusions: Comprehensive study of the POD genes suggests that their functional diversity during Betula pendula growth and development. Our findings provide a basis for further functional analysis on POD genes family in Betula pendula .


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kewei Cai ◽  
Huixin Liu ◽  
Song Chen ◽  
Yi Liu ◽  
Xiyang Zhao ◽  
...  

Abstract Background Class III peroxidases (POD) proteins are widely present in the plant kingdom that are involved in a broad range of physiological processes including stress responses and lignin polymerization throughout the plant life cycle. At present, POD genes have been studied in Arabidopsis, rice, poplar, maize and Chinese pear, but there are no reports on the identification and function of POD gene family in Betula pendula. Results We identified 90 nonredundant POD genes in Betula pendula. (designated BpPODs). According to phylogenetic relationships, these POD genes were classified into 12 groups. The BpPODs are distributed in different numbers on the 14 chromosomes, and some BpPODs were located sequentially in tandem on chromosomes. In addition, we analyzed the conserved domains of BpPOD proteins and found that they contain highly conserved motifs. We also investigated their expression patterns in different tissues, the results showed that some BpPODs might play an important role in xylem, leaf, root and flower. Furthermore, under low temperature conditions, some BpPODs showed different expression patterns at different times. Conclusions The research on the structure and function of the POD genes in Betula pendula plays a very important role in understanding the growth and development process and the molecular mechanism of stress resistance. These results lay the theoretical foundation for the genetic improvement of Betula pendula.


Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 473 ◽  
Author(s):  
Duan ◽  
Wang ◽  
Chao ◽  
Zhang ◽  
Zhang

Class III peroxidases (PODs), commonly known as secretable class III plant peroxidases, are plant-specific enzymes that play critical roles in not only plant growth and development but also the responses to biotic and abiotic stress. In this study, we identified 198 nonredundant POD genes, designated GhPODs, with 180 PODs being predicted to secrete into apoplast. These POD genes were divided into 10 sub-groups based on their phylogenetic relationships. We performed systematic bioinformatic analysis of the POD genes, including analysis of gene structures, phylogenetic relationships, and gene expression profiles. The GhPODs are unevenly distributed on both upland cotton sub-genome A and D chromosomes. Additionally, these genes have undergone 15 segmental and 12 tandem duplication events, indicating that both segmental and tandem duplication contributed to the expansion of the POD gene family in upland cotton. Ka/Ks analysis suggested that most duplicated GhPODs experienced negative selection, with limited functional divergence during the duplication events. High-throughput RNA-seq data indicated that most highly expressed genes might play significant roles in root, stem, leaf, and fiber development. Under K or P deficiency conditions, PODs showed different expression patterns in cotton root and leaf. This study provides useful information for further functional analysis of the POD gene family in upland cotton.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ying Li ◽  
Qilu Song ◽  
Yamin Zhang ◽  
Zheng Li ◽  
Jialin Guo ◽  
...  

Abstract SQUAMOSA promoter-binding protein (SBP)-box genes encode a family of plant-specific transcription factors that play roles in plant growth and development. The characteristics of SBP-box genes in rice (Oryza sativa) and Arabidopsis have been reported, but their potential roles in wheat (Triticum aestivum) are not fully understood. In this study, 48 SBP-box genes (TaSBPs) were identified; they were located in all wheat chromosomes except for 4B and 4D. Six TaSBPs were identified as tandem duplication genes that formed three tandem duplication pairs, while 22 were segmentally duplicated genes that formed 16 segmental duplication pairs. Subcellular localization prediction showed TaSBPs were located in nucleus. Among the 48 TaSBPs, 24 were predicted to be putative targets of TamiR156. Phylogenetic analysis showed that TaSBPs, AtSBPs, and OsSBPs that shared similar functions were clustered into the same subgroups. The phylogenetic relationships between the TaSBPs were supported by the identification of highly conserved motifs and gene structures. Four types of cis-elements––transcription-related, development-related, hormone-related, and abiotic stress-related elements––were found in the TaSBP promoters. Expression profiles indicated most TaSBPs participate in flower development and abiotic stress responses. This study establishes a foundation for further investigation of TaSBP genes and provides novel insights into their biological functions.


Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 244
Author(s):  
Seung Hee Eom ◽  
Tae Kyung Hyun

Histone deacetylases (HDACs) are known as erasers that remove acetyl groups from lysine residues in histones. Although plant HDACs play essential roles in physiological processes, including various stress responses, our knowledge concerning HDAC gene families and their evolutionary relationship remains limited. In Brassica rapa genome, we identified 20 HDAC genes, which are divided into three major groups: RPD3/HDA1, HD2, and SIR2 families. In addition, seven pairs of segmental duplicated paralogs and one pair of tandem duplicated paralogs were identified in the B. rapa HDAC (BraHDAC) family, indicating that segmental duplication is predominant for the expansion of the BraHDAC genes. The expression patterns of paralogous gene pairs suggest a divergence in the function of BraHDACs under various stress conditions. Furthermore, we suggested that BraHDA3 (homologous of Arabidopsis HDA14) encodes the functional HDAC enzyme, which can be inhibited by Class I/II HDAC inhibitor SAHA. As a first step toward understanding the epigenetic responses to environmental stresses in Chinese cabbage, our results provide a solid foundation for functional analysis of the BraHDAC family.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sadhana Singh ◽  
Himabindu Kudapa ◽  
Vanika Garg ◽  
Rajeev K. Varshney

Abstract Background Chickpea, pigeonpea, and groundnut are the primary legume crops of semi-arid tropics (SAT) and their global productivity is severely affected by drought stress. The plant-specific NAC (NAM - no apical meristem, ATAF - Arabidopsis transcription activation factor, and CUC - cup-shaped cotyledon) transcription factor family is known to be involved in majority of abiotic stresses, especially in the drought stress tolerance mechanism. Despite the knowledge available regarding NAC function, not much information is available on NAC genes in SAT legume crops. Results In this study, genome-wide NAC proteins – 72, 96, and 166 have been identified from the genomes of chickpea, pigeonpea, and groundnut, respectively, and later grouped into 10 clusters in chickpea and pigeonpea, while 12 clusters in groundnut. Phylogeny with well-known stress-responsive NACs in Arabidopsis thaliana, Oryza sativa (rice), Medicago truncatula, and Glycine max (soybean) enabled prediction of putative stress-responsive NACs in chickpea (22), pigeonpea (31), and groundnut (33). Transcriptome data revealed putative stress-responsive NACs at various developmental stages that showed differential expression patterns in the different tissues studied. Quantitative real-time PCR (qRT-PCR) was performed to validate the expression patterns of selected stress-responsive, Ca_NAC (Cicer arietinum - 14), Cc_NAC (Cajanus cajan - 15), and Ah_NAC (Arachis hypogaea - 14) genes using drought-stressed and well-watered root tissues from two contrasting drought-responsive genotypes of each of the three legumes. Based on expression analysis, Ca_06899, Ca_18090, Ca_22941, Ca_04337, Ca_04069, Ca_04233, Ca_12660, Ca_16379, Ca_16946, and Ca_21186; Cc_26125, Cc_43030, Cc_43785, Cc_43786, Cc_22429, and Cc_22430; Ah_ann1.G1V3KR.2, Ah_ann1.MI72XM.2, Ah_ann1.V0X4SV.1, Ah_ann1.FU1JML.2, and Ah_ann1.8AKD3R.1 were identified as potential drought stress-responsive candidate genes. Conclusion As NAC genes are known to play role in several physiological and biological activities, a more comprehensive study on genome-wide identification and expression analyses of the NAC proteins have been carried out in chickpea, pigeonpea and groundnut. We have identified a total of 21 potential drought-responsive NAC genes in these legumes. These genes displayed correlation between gene expression, transcriptional regulation, and better tolerance against drought. The identified candidate genes, after validation, may serve as a useful resource for molecular breeding for drought tolerance in the SAT legume crops.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xin Wang ◽  
Ming-Hua Wu ◽  
Dong Xiao ◽  
Ruo-Lan Huang ◽  
Jie Zhan ◽  
...  

Abstract Background As an important cash crop, the yield of peanut is influenced by soil acidification and pathogen infection. Receptor-like protein kinases play important roles in plant growth, development and stress responses. However, little is known about the number, location, structure, molecular phylogeny, and expression of RLKs in peanut, and no comprehensive analysis of RLKs in the Al stress response in peanuts have been reported. Results A total of 1311 AhRLKs were identified from the peanut genome. The AhLRR-RLKs and AhLecRLKs were further divided into 24 and 35 subfamilies, respectively. The AhRLKs were randomly distributed across all 20 chromosomes in the peanut. Among these AhRLKs, 9.53% and 61.78% originated from tandem duplications and segmental duplications, respectively. The ka/ks ratios of 96.97% (96/99) of tandem duplication gene pairs and 98.78% (646/654) of segmental duplication gene pairs were less than 1. Among the tested tandem duplication clusters, there were 28 gene conversion events. Moreover, all total of 90 Al-responsive AhRLKs were identified by mining transcriptome data, and they were divided into 7 groups. Most of the Al-responsive AhRLKs that clustered together had similar motifs and evolutionarily conserved structures. The gene expression patterns of these genes in different tissues were further analysed, and tissue-specifically expressed genes, including 14 root-specific Al-responsive AhRLKs were found. In addition, all 90 Al-responsive AhRLKs which were distributed unevenly in the subfamilies of AhRLKs, showed different expression patterns between the two peanut varieties (Al-sensitive and Al-tolerant) under Al stress. Conclusions In this study, we analysed the RLK gene family in the peanut genome. Segmental duplication events were the main driving force for AhRLK evolution, and most AhRLKs subject to purifying selection. A total of 90 genes were identified as Al-responsive AhRLKs, and the classification, conserved motifs, structures, tissue expression patterns and predicted functions of Al-responsive AhRLKs were further analysed and discussed, revealing their putative roles. This study provides a better understanding of the structures and functions of AhRLKs and Al-responsive AhRLKs.


2021 ◽  
Vol 22 (8) ◽  
pp. 4201
Author(s):  
Shuai Zhang ◽  
Lang Xie ◽  
Shuqing Zheng ◽  
Baoyue Lu ◽  
Wenjing Tao ◽  
...  

The short-chain dehydrogenases/reductases (SDR) superfamily is involved in multiple physiological processes. In this study, genome-wide identification and comprehensive analysis of SDR superfamily were carried out in 29 animal species based on the latest genome databases. Overall, the number of SDR genes in animals increased with whole genome duplication (WGD), suggesting the expansion of SDRs during evolution, especially in 3R-WGD and polyploidization of teleosts. Phylogenetic analysis indicated that vertebrates SDRs were clustered into five categories: classical, extended, undefined, atypical, and complex. Moreover, tandem duplication of hpgd-a, rdh8b and dhrs13 was observed in teleosts analyzed. Additionally, tandem duplications of dhrs11-a, dhrs7a, hsd11b1b, and cbr1-a were observed in all cichlids analyzed, and tandem duplication of rdh10-b was observed in tilapiines. Transcriptome analysis of adult fish revealed that 93 SDRs were expressed in more than one tissue and 5 in one tissue only. Transcriptome analysis of gonads from different developmental stages showed that expression of 17 SDRs were sexually dimorphic with 11 higher in ovary and 6 higher in testis. The sexually dimorphic expressions of these SDRs were confirmed by in situ hybridization (ISH) and qPCR, indicating their possible roles in steroidogenesis and gonadal differentiation. Taken together, the identification and the expression data obtained in this study contribute to a better understanding of SDR superfamily evolution and functions in teleosts.


Sign in / Sign up

Export Citation Format

Share Document