scholarly journals Formability and interface structure of Al/Mg/Al composite sheet rolled by hard-plate rolling (HPR)

Author(s):  
Peng Da Huo ◽  
Feng Li ◽  
Ye Wang ◽  
Xing Mao Xiao

Abstract How to improve the bonding ability and quality perform between heterogeneous plates has always been one of the difficult issues that have long been concerned in the field of high-performance heterogeneous composite plate forming and manufacturing. This paper proposes a new method for manufacturing heterogeneous composite panels—composite panels by hard-plate rolling (HPR). In addition to adding hard plates above and below the aluminum/magnesium/aluminum (Al/Mg/Al) composite slab, the research results of the hot rolling process of the composite plate with or without the hard plates at 40%, 60%, and 80% reduction show that the hard plates can be rolled During the manufacturing process, the shear stress in the rolling direction (RD) is partially converted into the compressive stress in the normal direction (ND), which then increases the welding pressure between the heterogeneous composite laminates, which can inhibit the occurrence of bending and edge cracks, and significantly improve the quality and shape of the board ability. At the same time, through the study of the interface structure of the composite plate, it can be known that metallurgical bonding can be achieved with a small reduction after the addition of the hard-plate, and two clear layers of Al3Mg2 and Al17Mg12 intermetallic compounds appear at the Al/Mg interface, and the thickness of the diffusion layer is uniform. Significantly larger than the traditional hot-rolled composite board, the thickness of the diffusion layer can reach 38µm under the condition of 60% reduction under the action of the hard-plate, the yield strength is 172.3MPa, and the elongation reaches 21.5%. In summary, the hot-rolled by hard-plate is high forming and manufacturing of performance heterogeneous composite panels provides a method.

2018 ◽  
Vol 10 (7) ◽  
pp. 1010-1017
Author(s):  
Qing-Hua Chang ◽  
Jing-Pei Xie ◽  
Han-Wei Tian ◽  
Ai-Qin Wang ◽  
Wen-Yan Wang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3603
Author(s):  
Tim Pasang ◽  
Benny Tavlovich ◽  
Omry Yannay ◽  
Ben Jakson ◽  
Mike Fry ◽  
...  

An investigation of mechanical properties of Ti6Al4V produced by additive manufacturing (AM) in the as-printed condition have been conducted and compared with wrought alloys. The AM samples were built by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) in 0°, 45° and 90°—relative to horizontal direction. Similarly, the wrought samples were also cut and tested in the same directions relative to the plate rolling direction. The microstructures of the samples were significantly different on all samples. α′ martensite was observed on the SLM, acicular α on EBM and combination of both on the wrought alloy. EBM samples had higher surface roughness (Ra) compared with both SLM and wrought alloy. SLM samples were comparatively harder than wrought alloy and EBM. Tensile strength of the wrought alloy was higher in all directions except for 45°, where SLM samples showed higher strength than both EBM and wrought alloy on that direction. The ductility of the wrought alloy was consistently higher than both SLM and EBM indicated by clear necking feature on the wrought alloy samples. Dimples were observed on all fracture surfaces.


2019 ◽  
Vol 28 (12) ◽  
pp. 7241-7247 ◽  
Author(s):  
Ya-zhou Liu ◽  
Wen-yan Wang ◽  
Ya-bo Huang ◽  
Jing-pei Xie ◽  
Ji-yao Liu ◽  
...  
Keyword(s):  

2017 ◽  
Vol 26 (1) ◽  
pp. 096369351702600
Author(s):  
Sun Yafei ◽  
Gao Peiwei ◽  
Peng Hailong ◽  
Liu Hongwei ◽  
Lu Xiaolin ◽  
...  

This paper presents the microstructures and mechanical and absorbing properties of double and triple layer, cement-based, composite panels. The results obtained show that the frequency range in 2-18GHz had less than −10dB effective bandwidth, which correlates with 3.7and 10.8GHz in double and triple layer cement-based composite panels. Furthermore, the double layer panel's compressive strength at 7 and 28 days was 40.2 and 61.2MPa, respectively. For the triple layer panel, the strength values were 35.6MPa and 49.2MPa. The triple layer panel's electromagnetic wave (EMW) absorbing properties were superior compared to the properties of the double layer panel. However, the triple layer panel's mechanical performance was inferior to that of the double layer panel. This study proposes that carbon nanotubes can effectively improve the compressive strength and interface structure of cement-based composite panels.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 638
Author(s):  
Ofer Tevet ◽  
David Svetlizky ◽  
David Harel ◽  
Zahava Barkay ◽  
Dolev Geva ◽  
...  

Additively manufactured (AM) materials and hot rolled materials are typically orthotropic, and exhibit anisotropic elastic properties. This paper elucidates the anisotropic elastic properties (Young’s modulus, shear modulus, and Poisson’s ratio) of Ti6Al4V alloy in four different conditions: three AM (by selective laser melting, SLM, electron beam melting, EBM, and directed energy deposition, DED, processes) and one wrought alloy (for comparison). A specially designed polygon sample allowed measurement of 12 sound wave velocities (SWVs), employing the dynamic pulse-echo ultrasonic technique. In conjunction with the measured density values, these SWVs enabled deriving of the tensor of elastic constants (Cij) and the three-dimensional (3D) Young’s moduli maps. Electron backscatter diffraction (EBSD) and micro-computed tomography (μCT) were employed to characterize the grain size and orientation as well as porosity and other defects which could explain the difference in the measured elastic constants of the four materials. All three types of AM materials showed only minor anisotropy. The wrought (hot rolled) alloy exhibited the highest density, virtually pore-free μCT images, and the highest ultrasonic anisotropy and polarity behavior. EBSD analysis revealed that a thin β-phase layer that formed along the elongated grain boundaries caused the ultrasonic polarity behavior. The finding that the elastic properties depend on the manufacturing process and on the angle relative to either the rolling direction or the AM build direction should be taken into account in the design of products. The data reported herein is valuable for materials selection and finite element analyses in mechanical design. The pulse-echo measurement procedure employed in this study may be further adapted and used for quality control of AM materials and parts.


2010 ◽  
Vol 654-656 ◽  
pp. 1255-1258 ◽  
Author(s):  
Dmitry Orlov ◽  
Rimma Lapovok ◽  
László S. Tóth ◽  
Ilana B. Timokhina ◽  
Peter D. Hodgson ◽  
...  

As-received hot-rolled 5.6 mm thick IF steel sheet was symmetrically/asymmetrically cold rolled at room temperature down to 1.9 mm. The asymmetric rolling was carried out in monotonic (an idle roll is always on the same side of the sheet) and reversal (the sheet was turned 180º around the rolling direction between passes) modes. Microstructure, texture and mechanical properties were analysed. The observed differences in structure and mechanical properties were modest, and therefore further investigation of the effects of other kinds of asymmetry is suggested.


2018 ◽  
Vol 941 ◽  
pp. 1529-1534
Author(s):  
Ni Tian ◽  
Qi Long Liu ◽  
Zi Yan Zhao ◽  
Gang Zhao ◽  
Kun Liu

The microstructure of Al-1.01Mg-1.11Si-0.38Cu-0.69Mn aluminum alloy plate hot-rolled from homogenization and homogenization-free ingots were investigated by optical microscopy and scanning electron microscopy assisted with energy dispersive spectroscopy (SEM/EDS). The results showed that there are 3 main kinds of constituents such as Mg2Si, AlCuMgSi and AlFeMnSi in the as-cast Al-1.01Mg-1.11Si-0.38Cu-0.69Mn aluminum alloy ingot. After homogenization treated at 545°C for 24h, the black Mg2Si and the white bright AlCuMgSi particles in the ingot dissolved into matrix, but the grey AlFeMnSi phase partly dissolved, contracted into sphere and become coarse, many ultrafine dispersoids appear in the dendritic arms. The constituents in the plates hot-rolled from the homogenization and homogenization-free ingots are both distributed as broken chains along the rolling direction. However, compared with the particles configuration in the plate that hot-rolled from homogenization ingot, the particles in the plate that hot-rolled from the homogenization-free ingot are finer, more numerous and more homogenous, and with insufficient recrystallization when the plates are solution treated at 545°C for 2 h and then water quenched.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2939
Author(s):  
Jiyun Zheng ◽  
Yuzhen Jia ◽  
Peinan Du ◽  
Hui Wang ◽  
Qianfu Pan ◽  
...  

In recent years, the development of nuclear grade FeCrAl-based alloys with enhanced accident tolerance has been carried out for light water reactor (LWR) fuel cladding to serve as a substitute for zirconium-based alloys. To achieve excellent microstructure stability and mechanical properties, the control of precipitation particles is critical for application of FeCrAl-based alloys. In this paper, the effect of thermomechanical processing on the microstructure and precipitation behavior of hot-rolled FeCrAl alloy plates was examined. After hot rolling, the FeCrAl alloy plates had typical deformation textures. The rolling direction (RD) orientation gradually rotated from <100> to <110> along with increasing reduction. Shear bands and cell structures were formed in the matrix, and the former acted as preferable nucleation sites for crystallization. Improved deformation helped to produce strain-induced precipitation. The plate with 83% reduction had the most homogeneous and finest precipitation particles. Identification results by TEM indicated that the Laves precipitation was of the Fe2Nb-type crystal structure type, with impurities including Mo, Cr, and Si. The plate with uniform Laves particles displayed favorable heat stability after a long period of aging at 800 °C. The microstructure evolution of the aged sample was also observed. The deformation microstructure and the strain-induced precipitation mechanism of FeCrAl alloys are discussed.


Sign in / Sign up

Export Citation Format

Share Document