scholarly journals Nitrification Inhibitor 3,4-dimethylpyrazole Phosphate Improves Nitrogen Recovery and Accumulation in Cotton Plants by Reducing NO3- Leaching Under 15N-urea Fertilization

Author(s):  
Ezio Nalin de Paulo ◽  
Fernando Shintate Galindo ◽  
Flávio Henrique Silveira Rabêlo ◽  
Joaquim José Frazão ◽  
Jose Lavres

Abstract Purpose: The use of nitrification inhibitors could be an interesting alternative to enhance nitrogen (N) fertilizer use efficiency in annual crops such as cotton, under tropical soil conditions. Thus, our aim was to evaluate the efficiency of nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in a typical tropical soil, evaluating the fate of nitrogen (N-NO3-, N-NH4+ and total N in soil and leached water), N-accumulation and N recovery by cotton plants and soil. Methods: Leaching columns with cotton plants were used to access N-NO3- and N-NH4+ losses in drainage water. Treatments consisted in three N levels applied in side-dressing (corresponding to 50, 100 and 150 kg N ha-1) as 15N-urea with and without DMPP application. An additional treatment (absence of N application in side-dressing) was used as control. Results: 3,4-dimethylpyrazole phosphate was efficient to improve N recovery from applied urea fertilizer in plants and in the soil by reducing NO3- leaching, leading to enhanced N acquisition from fertilizer and soil, augmenting plants N-accumulation, mainly when high N levels above 100 kg N ha-1 were applied. We found that total N recovery increased 31% when 150 kg N ha-1 was applied as urea + DMPP source compared to conventional urea. In addition, DMPP application reduced NO3- leaching losses (c.a. of 11 to 20%), although had no significant effect on shoot and root dry matter yield. Conclusion: The reduction of NO3- leaching losses highlights the potential of DMPP to mitigate the impact of increased urea input on leaching losses thereby improving N use efficiency and N uptake in cotton crop.

2008 ◽  
Vol 88 (5) ◽  
pp. 849-857 ◽  
Author(s):  
P. A. Barbieri ◽  
H. S. Rozas ◽  
H. E. Echeverría

Nitrogen (N) fertilization is an important management practice to increased grain yield; however, it is imperative to increase nitrogen use efficiency (NUE) in order to diminish risks of environmental pollution. The objective of this study was to determine the effect of fertilization times on wheat grain yield, grain N accumulation and grain N recovery efficiency (RE) in different sites and years at the south-eastern wheat belt of the Pampas. The experiments were a factorial combination of N rates and fertilization times (sowing and tillering). Grain yield ranged from 1600 to 7900 kg ha-1 and fertilization at tillering increased grain yield compared with fertilization at sowing (5465 vs. 5110 kg ha-1), similar behavior was observed for grain N accumulation (95 vs. 86 kg ha-1) and RE (0.41 vs. 0.32). Predicted grain yield by CERES-Wheat model for different N rates and fertilization times was correlated with observed grain yield (r2 = 0.71). While fertilization at tillering significantly increased grain yield, CERES-Wheat model estimated nitrate leaching losses that ranged from 12 to 62 kg N ha-1 and from 7 to 16 kg N ha-1 for fertilization at sowing and tillering, respectively. However, denitrification losses ranged from 1.2 to 3.9 and from 0.5 to 2.4 kg N ha-1 for fertilization at sowing and tillering, respectively. Leaching losses for fertilization at sowing are a consequence of water excess early in the growing season and would be the main N loss factor. Therefore, N application at tillering is an appropriate strategy to improve NUE in the south-eastern wheat belt of the Pampas. Key words: Wheat, fertilization time, nitrogen use efficiency, N losses, CERES-Wheat


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1505
Author(s):  
Amritbir Riar ◽  
Gurjeet Gill ◽  
Glenn K. McDonald

Canola has a high nitrogen requirement and optimal nitrogen (N) management in environments with variable rainfall is a challenge. This study investigated the impact of timing of N as a single or split application at different growth stages on seed yield, N uptake and water-use efficiency in canola. Nitrogen rates of 100 and 200 kg ha−1 were applied after sowing when two leaves were unfolded or equally split between the rosette, green bud and first flower stages. The experiments were conducted at two sites with contrasting rainfall and a supplementary irrigation treatment at the low rainfall site, generating a third environment. Nitrogen application increased seed yield by up to 20% at a high rainfall site and by up to 77% at a medium rainfall site, but the timing of N did not significantly affect the yield response to N. Seed yield was closely associated with total dry matter production and seed m−2. N-use efficiency was influenced more by N recovery and uptake efficiency, rather than physiological efficiency, which highlights the importance of soil moisture availability and the ability of the crop to exploit soil water and N reserves. The results suggest that better use of subsoil moisture by overcoming some of the subsoil constraints may be an avenue for further improvements in yield and nitrogen-use efficiency (NUE) of canola in this environment.


2020 ◽  
Author(s):  
Qian Zheng ◽  
Junjun Ding ◽  
Qiaozhen Li ◽  
Chunying Xu ◽  
Wei Lin ◽  
...  

Abstract In North China, high levels of N fertilizer and irrigation water are used in fields, which cause considerable N2O fluxes via several pathways, especially anaerobic denitrification. Anaerobic denitrification is regarded as an important microbial process for N2O production in soils with a low O2 level and high N and labile C availability (the typical soil conditions caused by high levels of N fertilizer and irrigation water in the field). We conducted an anaerobic incubation experiment to determine the impact of soil acidification (with a series of soil pH levels, pH 6.2, pH 7.1, and pH 8.7) on N2O source partitioning with the addition of KNO3 and glucose. Natural abundance isotope techniques and gas inhibitor technique were applied to analyze the N2O flux derived from fungal denitrification and bacterial denitrification and its isotopocule characteristics emitted from soils after the addition of NO- 3 and glucose. A mapping approach was used to obtain further insight into the N2O production processes. Our findings confirmed that soil pH strongly controlled the N2O production and reduction rates of denitrification. Soil acidification significantly increased N2O emissions varied from 0.76 mg N kg-1 for natural soil (pH 8.7), to 1.88 mg N kg-1 for pH 7.1, and to 2.35 mg N kg-1 for pH 6.2, and had a blockage effect on the reduction of N2O to N2. The addition of carbon sources promoted complete denitrification. We assumed a higher contribution of fungal denitrification to N2O production compared to total N2O emission associated with acidified soil. A promotion of the contribution of fungal denitrification-derived N2O was indeed observed with decreasing pH, increasing from 0.28 mg N kg-1 for pH 8.7 to 0.94 mg N kg-1 for pH 6.2. The addition of glucose further increased the contribution of fungal denitrification to N2O production from 0.99 mg N kg-1 for pH 8.7 to 3.66 mg N kg-1 for pH 6.2. The mapping approach provided rational results for correcting N2O reduction compared with the acetylene inhibition method. The results calculated by both methods indicated a reasonably large contribution of fungal denitrification to total N2O production in acidified soils.


Soil Research ◽  
1992 ◽  
Vol 30 (2) ◽  
pp. 223 ◽  
Author(s):  
RC Dalal

The effects of conservation practices, zero-tillage and stubble retention, on long-term trends in total N (0-0.1 m depth) of a Vertisol used mainly for wheat cropping were studied in a semi-arid subtropical environment (28�12'S. and 152�06' E.) in Queensland. Trends in total N content of a Vertisoi (65% clay, pH 7.2) were discerned during a 22-year period of management practices including: zero-tillage (ZT) and conventional tillage (CT); stubble retention (SR) and stubble burning (SB); and fertilizer N application of nil (Nl), 23 kg N ha-1 yr-1 (N2) and 69 kg N ha-1 yr-1 (N3). Soil total N (0-0.1 m) declined under all treatments at an overall rate of 25f 2 kg N ha-1 yr-1 although after 22 years soil under ZT, SR and N3 treatments still contained higher soil total N than under CT, SB and N1 treatments. Apparent fertilizer N recovery in the soil-plant system was poor (34 64%) under CTSB, CTSR and ZTSB and ZTSR treatments, because N removed by the wheat crop was equivalent to less than 20% of fertilizer N in the first 12 years of management practices, due mainly to disease. Deep leaching losses of NO3-N was the likely factor for poor recovery of N. The ZTSR treatment showed better apparent N recovery than the CTSB treatment, most likely due to greater immobilization of fertilizer N, more N uptake in grain due to additional available soil water and hence less leaching losses of NO3-N. Under the current cultural practices, soil total N (0-0.1 m) may decline further to reach a steady state (about 1000 kg N ha-1). However, the apparent N recovery in the soil-plant system can be increased by disease control (for example, resistant cultivars and winter-summer crop rotations) and optimum utilisation of soil water (opportunity cropping) to minimize NO3-N leaching losses and to maximise production of crop biomass.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1114 ◽  
Author(s):  
Soraia Cruz ◽  
Cláudia M.d.S. Cordovil ◽  
Renata Pinto ◽  
António G. Brito ◽  
Maria R. Cameira ◽  
...  

Agricultural activities are responsible for most of the nitrogen (N) inputs that degrade water quality. To elucidate the drivers leading to N pressures on water, we examined the resulting state of surface waters in terms of N concentrations, the impact of this on water quality status and policy responses to these constraints across different climatic and management conditions. Portugal and Denmark were chosen as contrasting case studies for the Driver-Pressure-State-Impact-Response (DPSIR) analysis. Our results showed reductions of 39% and 25% in the use of mineral fertilizer in Portugal and Denmark, respectively, between 2000 and 2010. The N surplus in Portugal varied between 15 and 30 kg N ha−1 between 1995 and 2015. In Denmark, in 2015, this amount was 70 kg N ha−1, representing a 53% decrease from the 1990 value. The average amount of total N discharged to surface waters was 7 kg ha−1 for mainland Portugal in 2015 and 14.6 kg ha−1 for Denmark in 2014. These reductions in the N surplus were attributed to historical policies aimed at N pressure abatement. In Denmark, N losses are expected to decline further through the continuation or improvement of existing national action plans. In Portugal, they are expected to decline further due to the expansion of Nitrate Vulnerable Zones and the introduction of targeted policies aimed at improving N use efficiency and reducing losses to water.


1988 ◽  
Vol 68 (1) ◽  
pp. 133-142 ◽  
Author(s):  
YADVINDER SINGH ◽  
E. G. BEAUCHAMP

Three field experiments were undertaken over a 2-yr period to compare the response of winter wheat to fall-applied large urea granules containing a nitrification inhibitor (dicyandiamide, DCD) with that of commercial urea granules (prills) applied as a top dressing in the spring. The objective was to determine the effectiveness of large urea granules coupled with DCD in conserving N when applied at planting or one month after planting. Granules of 1, 2 and 3 g urea as well as 2 g urea + DCD were compared with commercial urea prills at an application rate of 80 kg N ha−1. Large urea granules, as compared with fall-incorporated commercial urea prills, were effective in conserving N over the winter period especially when applied 1 mo after planting and resulted in yields and apparent N recovery similar to those with top dressed commercial prills applied in the spring. Incorporation of DCD into 2-g granules (50 or 100 g kg−1 urea) further increased the conservation of N fertilizer as reflected by higher yields and greater apparent fertilizer N recovery. Uptake of 15N from 2-g urea granules decreased with distance from the granule. However, plants furthest from spaced large granules were able apparently to obtain sufficient N to reach the yield potential dictated by the weather and soil conditions. Yield and N recovery data indicated that N conservation increased with increasing granule size. Crop response and fertilizer N availability decreased as depth of placement exceeded 10 cm. Placement between the 5 and 10 cm depths appeared to maximize fertilizer N availability. It was concluded that a combination of large urea granules and a nitrification inhibitor (such as DCD) can effectively conserve fall-applied N and result in yield responses and N uptake by winter wheat similar to that with commercial urea prills applied as a top dressing in the spring. Key words: Time of application, yield, 15N recovery, apparent fertilizer N recovery


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khadim Dawar ◽  
Saif-ur-Rahman ◽  
Shah Fahad ◽  
Syed Sartaj Alam ◽  
Shah Alam Khan ◽  
...  

AbstractAn important source of the destructive greenhouse gas, nitrous oxide (N2O) comes from the use of ammonium based nitrogen (N) fertilizers that release N2O in the incomplete conversion (nitrification) of NH4+ to NO3ˉ1. Biochar has been shown to decrease nitrification rates and N2O emission. However, there is little information from semi-arid environments such as in Pakistan where conditions favor N2O emissions. Therefore, the object was to conduct field experiment to determine the impact of biochar rates in the presence or absence of urea amended soils on yield-scaled N2O emissions, and wheat yield and N use efficiency (NUE). The experiment on wheat (Triticum aestivum L.), had a randomized complete block design with four replications and the treatments: control, sole urea (150 kg N ha−1), 5 Mg biochar ha−1 (B5), 10 Mg biochar ha−1 (B10), urea + B5 or urea + B10. In urea amended soils with B5 or B10 treatments, biochar reduced total N2O emissions by 27 and 35%, respectively, over the sole urea treatment. Urea + B5 or + B10 treatments had 34 and 46% lower levels, respectively, of yield scaled N2O over the sole urea treatment. The B5 and B10 treatments had 24–38%, 9–13%, 12–27% and 35–43%, respectively greater wheat above-ground biomass, grain yield, total N uptake, and NUE, over sole urea. The biochar treatments increased the retention of NH4+ which likely was an important mechanism for reducing N2O by limiting nitrification. These results indicate that amending soils with biochar has potential to mitigate N2O emissions in a semi-arid and at the same time increase wheat productivity.


2012 ◽  
Vol 48 (4) ◽  
pp. 536-550 ◽  
Author(s):  
BHIM BAHADUR GHALEY

SUMMARYThe uptake of urea fertilizer (NDFF), applied with 150 kg nitrogen (N) ha−1, topdressed in five splits of 30 kg N ha−1 (30 N) each at 7, 26, 45, 70 and 83 days after transplanting (DAT) of rice (Oryza sativa L.), was investigated in an improved (Khangma Maap, KM) and a traditional (Janam, JN) cultivar in Bhutan highlands, using enriched 15N stable isotope. The treatments were arranged in a split–split plot design, with N fertilizer levels as main plots, cultivars as subplots and topdressing treatments as sub-subplots, with all the sub-subplots receiving the same dose except different timing of one split of enriched 15N to determine partial N fertilize use efficiency at each split dose. Although cultivar differences were not recorded in soil N accumulation and in total dry matter N, KM produced 21% higher grain yields compared to JN due to higher grain harvest index and partial factor productivity of N. Irrespective of the cultivars, topdressing timing had significant effects on NDFF, with highest mean N recovery (REN) of 29% of applied 30 N at 45 DAT during active tillering stage, resulting in mean NDFF total (grain + straw) uptake of 8.71 kg N ha−1 compared to least effective topdressing timing at 7 DAT with mean REN of 12% and NDFF total of 3.51 kg N ha−1. In similarity to topdressing at 45 DAT, topdressing at 70 DAT (panicle initiation stage) was equally effective with mean REN of 27% across the cultivars. Hence, fertilizer N topdressing recommendations that combine use of improved cultivars with N applications timed to coincide with maximum crop demand at 45 and 70 DAT, could enhance N fertilizer use efficiency for increased rice yields as well as reduce N losses downstream, which can cause adverse off-site environmental effects.


2017 ◽  
Vol 142 (2) ◽  
pp. 71-84 ◽  
Author(s):  
Gerhard C. Rossouw ◽  
Jason P. Smith ◽  
Celia Barril ◽  
Alain Deloire ◽  
Bruno P. Holzapfel

Grapevine (Vitis vinifera) berries are sugar and nitrogen (N) sinks between veraison and fruit maturity. Limited photoassimilation, often caused by water constraints, induces reserve total nonstructural carbohydrate (TNC) remobilization, contributing to berry sugar accumulation, while fruit N accumulation can be affected by vine water supply. Although postveraison root carbohydrate remobilization toward the fruit has been identified through 14C tracing studies, it is still unclear when this remobilization occurs during the two phases of berry sugar accumulation (rapid and slow). Similarly, although postveraison N reserve mobilization toward the fruit has been reported, the impact of water constraints during berry N accumulation on its translocation from the different grapevine organs requires clarification. Potted grapevines were grown with or without fruit from the onset of veraison. Vines were irrigated to sustain water constraints, and fortnightly root, trunk, shoot, and leaf structural biomass, starch, soluble sugar, total N, and amino N concentrations were determined. The fruit sugar and N accumulation was also assessed. Root starch depletion coincided with root sucrose and hexose accumulation during peak berry sugar accumulation. Defruiting at veraison resulted in continuous root growth, earlier starch storage, and root hexose accumulation. Leaf N depletion coincided with fruit N accumulation, while the roots of defruited vines accumulated N reserves. Root growth, starch, and N reserve accumulation were affected by maturing fruit during water constraints. Root starch is an alternative source to support fruit sugar accumulation, resulting in reserve starch depletion during rapid fruit sugar accumulation, while root starch refills during slow berry sugar accumulation. On the other hand, leaf N is a source toward postveraison fruit N accumulation, and the fruit N accumulation prevents root N storage.


OENO One ◽  
2016 ◽  
Vol 50 (1) ◽  
pp. 23 ◽  
Author(s):  
Thibaut Verdenal ◽  
Jorge E. Spangenberg ◽  
Vivian Zufferey ◽  
Fabrice Lorenzini ◽  
Agnes Dienes-Nagy ◽  
...  

<p style="text-align: justify;"><strong>Aims</strong>: Agroscope investigated the impact of the leaf-to-fruit ratio on nitrogen (N) partitioning in grapevine following a foliar urea application with the aim of increasing the yeast assimilable nitrogen (YAN) concentration in the must. <strong></strong></p><p style="text-align: justify;"><strong>Methods and results</strong>: Foliar urea was applied to field-grown <em>Vitis vinifera</em> L. cv. Chasselas grapevines as part of a split-plot trial with two variable parameters: canopy height (90 or 150 cm) and fruit load (5 or 10 clusters per vine). Foliar application of 20 kg/ha of <sup>15</sup>N-labelled urea (10 atom% <sup>15</sup>N) was performed at veraison. The isotope labelling method allowed to observe foliar-N partitioning in the plant at harvest. The leaf-to-fruit ratio varied between 0.4 and 1.6 m<sup>2</sup>/kg, and strongly impacted the N partitioning in the grapevines. Total N and foliar-N partitioning was mainly affected by the variation of canopy height. The YAN concentration varied from 143 to 230 mg/L (+60 %) depending on the leaf area. An oversized canopy (+31 %DW) induced a decrease in the total N concentration of all organs (-17 %), and a decrease in YAN quantity in the must in particular (-53 %). A negative correlation between the N concentration and the carbon isotope discrimination (CID) could be pointed out in a condition of no water restriction (e.g., R<sup>2</sup> = 0.65 in the must).<strong></strong></p><p style="text-align: justify;"><strong>Conclusion</strong>: An excessive leaf area can induce YAN deficiency in the must. Thus, a balanced leaf-to-fruit ratio – between 1 and 1.2 m<sup>2</sup>/kg – should be maintained to guarantee grape maturity, YAN accumulation in the must and N recovery in the reserve organs. <strong></strong></p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: The results of this study encourage further research to understand the role of other physiological parameters that affect N partitioning in the grapevine – YAN accumulation in the must in particular – and add new perspectives for N management practices in the vineyard.<strong></strong></p>


Sign in / Sign up

Export Citation Format

Share Document