scholarly journals Genome-wide in silico identification and expression analysis of beta-galactosidase family members in sweetpotato [Ipomoea batatas (L.) Lam.]

2020 ◽  
Author(s):  
Fuyun Hou ◽  
Zhen Qin ◽  
Taifeng Du ◽  
Tao Xu ◽  
Aixian Li ◽  
...  

Abstract Background: Sweetpotato (Ipomoea batatas (L.) Lam.) serves as an important food source for human beings. β-galactosidase (bgal) is a glycosyl hydrolase involved in cell wall modification, which plays essential roles in plant development and environmental stress adaptation. However, the function of bgals genes in sweetpotato has yet to be reported.Results: In this study, 17 β-galactosidase genes (Ibbgal) were identified in sweetpotato, which were classified into seven subfamilies using interspecific phylogenetic and comparative analyses. The promoter regions of Ibbgals harbored several stress, hormone and light responsive cis-acting elements. Quantitative real-time PCR results displayed that Ibbgal genes had the distinct expression patterns across different tissues and varieties. Moreover, the expression profiles under various hormonal treatments, abiotic and biotic stresses were highly divergent in leaves and root. Conclusions: These findings suggest that Ibbgals may involve in plant development and stress responses through regulating the metabolism of cell wall polysaccharides.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fuyun Hou ◽  
Taifeng Du ◽  
Zhen Qin ◽  
Tao Xu ◽  
Aixian Li ◽  
...  

Abstract Background Sweetpotato (Ipomoea batatas (L.) Lam.) serves as an important food source for human beings. β-galactosidase (bgal) is a glycosyl hydrolase involved in cell wall modification, which plays essential roles in plant development and environmental stress adaptation. However, the function of bgal genes in sweetpotato remains unclear. Results In this study, 17 β-galactosidase genes (Ibbgal) were identified in sweetpotato, which were classified into seven subfamilies using interspecific phylogenetic and comparative analysis. The promoter regions of Ibbgals harbored several stress, hormone and light responsive cis-acting elements. Quantitative real-time PCR results displayed that Ibbgal genes had the distinct expression patterns across different tissues and varieties. Moreover, the expression profiles under various hormonal treatments, abiotic and biotic stresses were highly divergent in leaves and root. Conclusions Taken together, these findings suggested that Ibbgals might play an important role in plant development and stress responses, which provided evidences for further study of bgal function and sweetpotato breeding.


2020 ◽  
Author(s):  
Fuyun Hou ◽  
Zhen Qin ◽  
Taifeng Du ◽  
Tao Xu ◽  
Aixian Li ◽  
...  

Abstract Background: Sweetpotato (Ipomoea batatas (L.) Lam.) serves as an important food source for human beings. β-galactosidase (bgal) is a glycosyl hydrolase involved in cell wall modification, which plays essential roles in plant development and environmental stress adaptation. However, the function of bgal genes in sweetpotato remains unclear.Results: In this study, 17 β-galactosidase genes (Ibbgal) were identified in sweetpotato, which were classified into seven subfamilies using interspecific phylogenetic and comparative analyses. The promoter regions of Ibbgals harbored several stress, hormone and light responsive cis-acting elements. Quantitative real-time PCR results displayed that Ibbgal genes had the distinct expression patterns across different tissues and varieties. Moreover, the expression profiles under various hormonal treatments, abiotic and biotic stresses were highly divergent in leaves and root. Conclusions: Taken together, these findings suggested that Ibbgals might play an important role in plant development and stress responses, which provided evidences for further study of bgal function and sweetpotato breeding.


2020 ◽  
Author(s):  
zongyun li ◽  
fuyun hou ◽  
zhen qin ◽  
Taifeng Du ◽  
Tao Xu ◽  
...  

Abstract Background: Sweetpotato (Ipomoea batatas (L.) Lam.) serves as an important food source for human beings. β-galactosidase (β-gal) is a glycosyl hydrolase involved in cell wall modification, which plays essential roles in plant development and environmental stress adaptation. However, the function of β-gals genes in sweetpotato has yet to be reported.Results: In this study, 17 β-galactosidase genes (Ibbgal) were identified in sweetpotato, which were classified into seven subfamilies using interspecific phylogenetic and comparative analyses. The promoter regions of Ibbgals harbored several stress, hormone and light responsive cis-acting elements. The Ibbgal genes were specifically expressed in different tissues and varieties, and differentially expressed under various hormonal treatments, and abiotic and biotic stresses.Conclusions: These findings suggest that Ibbgals may involve in plant development and stress responses through regulating the metabolism of cell wall polysaccharides.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2169
Author(s):  
Hailian Zhou ◽  
Jiaying Li ◽  
Xueyuan Liu ◽  
Xiaoshuang Wei ◽  
Ziwei He ◽  
...  

Bcl-2-associated athanogene (BAG), a group of proteins evolutionarily conserved and functioned as co-chaperones in plants and animals, is involved in various cell activities and diverse physiological processes. However, the biological functions of this gene family in rice are largely unknown. In this study, we identified a total of six BAG members in rice. These genes were classified into two groups, OsBAG1, -2, -3, and -4 are in group I with a conserved ubiquitin-like structure and OsBAG5 and -6 are in group Ⅱ with a calmodulin-binding domain, in addition to a common BAG domain. The BAG genes exhibited diverse expression patterns, with OsBAG4 showing the highest expression level, followed by OsBAG1 and OsBAG3, and OsBAG6 preferentially expressed in the panicle, endosperm, and calli. The co-expression analysis and the hierarchical cluster analysis indicated that the OsBAG1 and OsBAG3 were co-expressed with primary cell wall-biosynthesizing genes, OsBAG4 was co-expressed with phytohormone and transcriptional factors, and OsBAG6 was co-expressed with disease and shock-associated genes. β-glucuronidase (GUS) staining further indicated that OsBAG3 is mainly involved in primary young tissues under both primary and secondary growth. In addition, the expression of the BAG genes under brown planthopper (BPH) feeding, N, P, and K deficiency, heat, drought and plant hormones treatments was investigated. Our results clearly showed that OsBAGs are multifunctional molecules as inferred by their protein structures, subcellular localizations, and expression profiles. BAGs in group I are mainly involved in plant development, whereas BAGs in group II are reactive in gene regulations and stress responses. Our results provide a solid basis for the further elucidation of the biological functions of plant BAG genes.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 755
Author(s):  
Angyan Ren ◽  
Rana Ahmed ◽  
Huanyu Chen ◽  
Linhe Han ◽  
Jinhao Sun ◽  
...  

Cell walls are basically complex with dynamic structures that are being involved in several growth and developmental processes, as well as responses to environmental stresses and the defense mechanism. Pectin is secreted into the cell wall in a highly methylesterified form. It is able to perform function after the de-methylesterification by pectin methylesterase (PME). Whereas, the pectin methylesterase inhibitor (PMEI) plays a key role in plant cell wall modification through inhibiting the PME activity. It provides pectin with different levels of degree of methylesterification to affect the cell wall structures and properties. The PME activity was analyzed in six tissues of Sorghum bicolor, and found a high level in the leaf and leaf sheath. PMEI families have been identified in many plant species. Here, a total of 55 pectin methylesterase inhibitor genes (PMEIs) were identified from S. bicolor whole genome, a more detailed annotation of this crop plant as compared to the previous study. Chromosomal localization, gene structures and sequence characterization of the PMEI family were analyzed. Moreover, cis-acting elements analysis revealed that each PMEI gene was regulated by both internal and environmental factors. The expression patterns of each PMEI gene were also clustered according to expression pattern analyzed in 47 tissues under different developmental stages. Furthermore, some SbPMEIs were induced when treated with hormonal and abiotic stress. Taken together, these results laid a strong foundation for further study of the functions of SbPMEIs and pectin modification during plant growth and stress responses of cereal.


2014 ◽  
Vol 27 (12) ◽  
pp. 1390-1402 ◽  
Author(s):  
Yan Wang ◽  
Klaas Bouwmeester ◽  
Patrick Beseh ◽  
Weixing Shan ◽  
Francine Govers

L-type lectin receptor kinases (LecRK) are membrane-spanning receptor-like kinases with putative roles in biotic and abiotic stress responses and in plant development. In Arabidopsis, 45 LecRK were identified but their functions are largely unknown. Here, a systematic functional analysis was carried out by evaluating phenotypic changes of Arabidopsis LecRK T-DNA insertion lines in plant development and upon exposure to various external stimuli. None of the LecRK T-DNA insertion lines showed clear developmental changes, either under normal conditions or upon abiotic stress treatment. However, many of the T-DNA insertion lines showed altered resistance to Phytophthora brassicae, Phytophthora capsici, Pseudomonas syringae, or Alternaria brassicicola. One mutant defective in LecRK-V.5 expression was compromised in resistance to two Phytophthora spp. but showed enhanced resistance to Pseudomonas syringae. LecRK-V.5 overexpression confirmed its dual role in resistance and susceptibility depending on the pathogen. Combined analysis of these phenotypic data and LecRK expression profiles retrieved from public datasets revealed that LecRK which are hardly induced upon infection or even suppressed are also involved in pathogen resistance. Computed coexpression analysis revealed that LecRK with similar function displayed diverse expression patterns. Because LecRK are widespread in plants, the results presented here provide invaluable information for exploring the potential of LecRK as novel sources of resistance in crops.


Planta ◽  
2021 ◽  
Vol 253 (5) ◽  
Author(s):  
Peilei Chen ◽  
Valentino Giarola ◽  
Dorothea Bartels

Abstract Main conclusion The cell wall protein CpWAK1 interacts with pectin, participates in decoding cell wall signals, and induces different downstream responses. Abstract Cell wall-associated protein kinases (WAKs) are transmembrane receptor kinases. In the desiccation-tolerant resurrection plant Craterostigma plantagineum, CpWAK1 has been shown to be involved in stress responses and cell expansion by forming a complex with the C. plantagineum glycine-rich protein1 (CpGRP1). This prompted us to extend the studies of WAK genes in C. plantagineum. The phylogenetic analyses of WAKs from C. plantagineum and from other species suggest that these genes have been duplicated after species divergence. Expression profiles indicate that CpWAKs are involved in various biological processes, including dehydration-induced responses and SA- and JA-related reactions to pathogens and wounding. CpWAK1 shows a high affinity for “egg-box” pectin structures. ELISA assays revealed that the binding of CpWAKs to pectins is modulated by CpGRP1 and it depends on the apoplastic pH. The formation of CpWAK multimers is the prerequisite for the CpWAK–pectin binding. Different pectin extracts lead to opposite trends of CpWAK–pectin binding in the presence of Ca2+ at pH 8. These observations demonstrate that CpWAKs can potentially discriminate and integrate cell wall signals generated by diverse stimuli, in concert with other elements, such as CpGRP1, pHapo, Ca2+[apo], and via the formation of CpWAK multimers.


Genes ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 494 ◽  
Author(s):  
Xiaokang Zhuo ◽  
Tangchun Zheng ◽  
Zhiyong Zhang ◽  
Yichi Zhang ◽  
Liangbao Jiang ◽  
...  

NAC transcription factors (TFs) participate in multiple biological processes, including biotic and abiotic stress responses, signal transduction and development. Cold stress can adversely impact plant growth and development, thereby limiting agricultural productivity. Prunus mume, an excellent horticultural crop, is widely cultivated in Asian countries. Its flower can tolerate freezing-stress in the early spring. To investigate the putative NAC genes responsible for cold-stress, we identified and analyzed 113 high-confidence PmNAC genes and characterized them by bioinformatics tools and expression profiles. These PmNACs were clustered into 14 sub-families and distributed on eight chromosomes and scaffolds, with the highest number located on chromosome 3. Duplicated events resulted in a large gene family; 15 and 8 pairs of PmNACs were the result of tandem and segmental duplicates, respectively. Moreover, three membrane-bound proteins (PmNAC59/66/73) and three miRNA-targeted genes (PmNAC40/41/83) were identified. Most PmNAC genes presented tissue-specific and time-specific expression patterns. Sixteen PmNACs (PmNAC11/19/20/23/41/48/58/74/75/76/78/79/85/86/103/111) exhibited down-regulation during flower bud opening and are, therefore, putative candidates for dormancy and cold-tolerance. Seventeen genes (PmNAC11/12/17/21/29/42/30/48/59/66/73/75/85/86/93/99/111) were highly expressed in stem during winter and are putative candidates for freezing resistance. The cold-stress response pattern of 15 putative PmNACs was observed under 4 °C at different treatment times. The expression of 10 genes (PmNAC11/20/23/40/42/48/57/60/66/86) was upregulated, while 5 genes (PmNAC59/61/82/85/107) were significantly inhibited. The putative candidates, thus identified, have the potential for breeding the cold-tolerant horticultural plants. This study increases our understanding of functions of the NAC gene family in cold tolerance, thereby potentially intensifying the molecular breeding programs of woody plants.


2019 ◽  
Vol 144 (2) ◽  
pp. 79-91 ◽  
Author(s):  
Zhigang Ouyang ◽  
Huihui Duan ◽  
Lanfang Mi ◽  
Wei Hu ◽  
Jianmei Chen ◽  
...  

In eukaryotic systems, messenger RNA regulations, including splicing, 3′-end formation, editing, localization, and translation, are achieved by different RNA-binding proteins and noncoding RNAs. The YTH domain is a newly identified RNA-binding domain that was identified by comparing its sequence with that of splicing factor YT521-B. Previous study showed that the YTH gene plays an important role in plant resistance to abiotic and biotic stress. In this study, 211 YTH genes were identified in 26 species that represent four major plant lineages. Phylogenetic analysis revealed that these genes could be divided into eight subgroups. All of the YTH genes contain a YT521 domain and have different structures. Ten YTH genes were identified in navel orange (Citrus sinensis). The expression profiles of these CitYTH genes were analyzed in different tissues and at different fruit developmental stages, and CitYTH genes displayed distinct expression patterns under heat, cold, salt, and drought stress. Furthermore, expression of the CitYTH genes in response to exogenous hormones was measured. Nuclear localization was also confirmed for five of the proteins encoded by these genes after transient expression in Nicotiana benthamiana cells. This study provides valuable information on the role of CitYTHs in the signaling pathways involved in environmental stress responses in Citrus.


2020 ◽  
Vol 71 (18) ◽  
pp. 5631-5644 ◽  
Author(s):  
Zhong Tang ◽  
Yijie Wang ◽  
Axiang Gao ◽  
Yuchen Ji ◽  
Baoyun Yang ◽  
...  

Abstract Straighthead disease is a physiological disorder in rice with symptoms of sterile spikelets, distorted husks, and erect panicles. Methylated arsenic species have been implicated as the causal agent of the disease, but direct evidence is lacking. Here, we investigated whether dimethylarsinic acid (DMA) causes straighthead disease and its effect on the transcriptome of young panicles. DMA addition caused typical straighthead symptoms in hydroponic culture, which were alleviated by silicon addition. DMA addition to soil at the tillering to flowering stages induced straighthead disease. Transgenic rice expressing a bacterial arsenite methyltransferase gene gained the ability to methylate arsenic to mainly DMA, with the consequence of inducing straighthead disease. Field surveys showed that seed setting rate decreased with increasing DMA concentration in the husk, with an EC50 of 0.18 mg kg−1. Transcriptomic analysis showed that 364 and 856 genes were significantly up- and down-regulated, respectively, in the young panicles of DMA-treated plants compared with control, whereas Si addition markedly reduced the number of genes affected. Among the differentially expressed genes, genes related to cell wall modification and oxidative stress responses were the most prominent, suggesting that cell wall metabolism is a sensitive target of DMA toxicity and silicon protects against this toxicity.


Sign in / Sign up

Export Citation Format

Share Document