scholarly journals Estimation of Roll Damping Coefficient from Roll and Trajectory Data Using Extended Kalman Filter

2020 ◽  
Author(s):  
LK Gite ◽  
R S Deodhar

Abstract In this paper, a new method to estimate roll aerodynamic characteristics of a rolling projectiles is proposed. It is estimated from the measured roll rate and trajectory positional data using Extended Kalman Filter. Modified point mass model of trajectory modelling, in state space form, is used to represent system dynamics of Extended Kalman Filter. The roll and position data at every time step constitutes the measurement vector. Along with positions and velocities, roll damping coefficient is included as a state variable. As roll damping coefficient depends on projectile configurations and Mach number. Roll damping coefficients are estimated for two configurations viz. roll stabilized shell and fin stabilized rocket. The measurements are simulated for full flight regime to cover complete Mach regime. Estimated values are compared with known results for various Mach numbers. In both the cases estimation is in close agreement with known results.

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3638 ◽  
Author(s):  
Yan Wang ◽  
Huihui Jie ◽  
Long Cheng

As one of the most essential technologies, wireless sensor networks (WSNs) integrate sensor technology, embedded computing technology, and modern network and communication technology, which have become research hotspots in recent years. The localization technique, one of the key techniques for WSN research, determines the application prospects of WSNs to a great extent. The positioning errors of wireless sensor networks are mainly caused by the non-line of sight (NLOS) propagation, occurring in complicated channel environments such as the indoor conditions. Traditional techniques such as the extended Kalman filter (EKF) perform unsatisfactorily in the case of NLOS. In contrast, the robust extended Kalman filter (REKF) acquires accurate position estimates by applying the robust techniques to the EKF in NLOS environments while losing efficiency in LOS. Therefore it is very hard to achieve high performance with a single filter in both LOS and NLOS environments. In this paper, a localization method using a robust extended Kalman filter and track-quality-based (REKF-TQ) fusion algorithm is proposed to mitigate the effect of NLOS errors. Firstly, the EKF and REKF are used in parallel to obtain the location estimates of mobile nodes. After that, we regard the position estimates as observation vectors, which can be implemented to calculate the residuals in the Kalman filter (KF) process. Then two KFs with a new observation vector and equation are used to further filter the estimates, respectively. At last, the acquired position estimates are combined by the fusion algorithm based on the track quality to get the final position vector of mobile node, which will serve as the state vector of both KFs at the next time step. Simulation results illustrate that the TQ-REKF algorithm yields better positioning accuracy than the EKF and REKF in the NLOS environment. Moreover, the proposed algorithm achieves higher accuracy than interacting multiple model algorithm (IMM) with EKF and REKF.


Author(s):  
Vincenzo Punzo ◽  
Domenico Josto Formisano ◽  
Vincenzo Torrieri

Difficulty in obtaining accurate car-following data has traditionally been regarded as a considerable drawback in understanding real phenomena and has affected the development and validation of traffic microsimulation models. Recent advancements in digital technology have opened up new horizons in the conduct of research in this field. Despite the high degrees of precision of these techniques, estimation of time series data of speeds and accelerations from positions with the required accuracy is still a demanding task. The core of the problem is filtering the noisy trajectory data for each vehicle without altering platoon data consistency; i.e., the speeds and accelerations of following vehicles must be estimated so that the resulting intervehicle spacings are equal to the real one. Otherwise, negative spacings can also easily occur. The task was achieved in this study by considering vehicles of a platoon as a sole dynamic system and reducing several estimation problems to a single consistent one. This process was accomplished by means of a nonstationary Kalman filter that used measurements and time-varying error information from differential Global Positioning System devices. The Kalman filter was fruitfully applied here to estimation of the speed of the whole platoon by including intervehicle spacings as additional measurements (assumed to be reference measurements). The closed solution of an optimization problem that ensures strict observation of the true intervehicle spacings concludes the estimation process. The stationary counterpart of the devised filter is suitable for application to position data, regardless of the data collection technique used, e.g., video cameras.


1986 ◽  
Vol 108 (2) ◽  
pp. 156-158 ◽  
Author(s):  
R. Shoureshi ◽  
K. McLaughlin

Extended Kalman filter technique is used to develop an observer for a nonlinear thermofluid system, namely a heat pump. The observer’s optimal gain matrix is designed based on the eigenvalue distribution, integration time step, and stability of the system along a desired trajectory. The observer response is compared with experimental data and very good agreement is obtained.


2018 ◽  
Vol 7 (4) ◽  
pp. 48 ◽  
Author(s):  
Waleed Aldosari ◽  
Mohamed Zohdy

This work investigates boundary node selection when tracking a jammer. A technique to choose nodes to track jammers by estimating signal-to-noise Ratio (SNR), jammer-to-noise ratio (JNR), and jammer received signal strength (JRSS) are introduced in this paper. We proposed a boundary node selection threshold (BNST) algorithm. Every node can become a boundary node by comparing the SNR threshold, the average SNR estimated at the boundary node, and the received BNST value. The maximum sensing range, transmission range, and JRSS are the main parts of this algorithm. The algorithm is divided into three steps. In the first step, the maximum distance between two jammed nodes is found. Next, the maximum distance between the jammed node and its unjammed neighbors is computed. Finally, maximum BNST value is estimated. The extended Kalman filter (EKF) is utilized in this work to track the jammer and estimate its position in a different time step using selected boundary nodes. The experiment validates the benefits of selecting a boundary when tracking a jammer.


Author(s):  
Mohammad H. Elahinia ◽  
Hashem Ashrafiuon ◽  
Mehdi Ahmadian ◽  
William T. Baumann

This paper presents an Extended Kalman Filter (EKF) for estimation of the state variables of a single degree of freedom rotary manipulator actuated by Shape Memory Alloy (SMA). A state space model for the SMA manipulator is presented. The model includes nonlinear dynamics of the manipulator, constitutive model of Shape Memory Alloy, and the electrical and heat transfer behavior of SMA wire. In the experimental setup, angular position of the arm is the only state variable that is measured. The other state variables of the system are arm’s angular velocity, SMA wire’s stress, temperature and the Martensite factor, which are not available experimentally due to measurement difficulties. Hence, a model-based state estimator that works with noisy measurements is presented based on the Extended Kalman Filter. This estimator predicts the state vector at each time step and corrects its prediction based on the angular position of the arm which can be measured experimentally. The state variables collected through model simulations are also used to evaluate the performance of the EKF. Several EKF simulations are presented that show accurate, and robust performance of the estimator for different types of inputs.


Author(s):  
Mohammad H. Elahinia ◽  
Hashem Ashrafiuon ◽  
Mehdi Ahmadian ◽  
Daniel J. Inman

This paper presents a robust nonlinear control that uses a state variable estimator for control of a single degree of freedom rotary manipulator actuated by Shape Memory Alloy (SMA) wire. A model for SMA actuated manipulator is presented. The model includes nonlinear dynamics of the manipulator, a constitutive model of the Shape Memory Alloy, and the electrical and heat transfer behavior of SMA wire. The current experimental setup allows for the measurement of only one state variable which is the angular position of the arm. Due to measurement difficulties, the other three state variables, arm angular velocity and SMA wire stress and temperature, cannot be directly measured. A model-based state estimator that works with noisy measurements is presented based on the Extended Kalman Filter (EKF). This estimator predicts the state vector at each time step and corrects its prediction based on the angular position measurements. The estimator is then used in a nonlinear and robust control algorithm based on Variable Structure Control (VSC). The VSC algorithm is a control gain switching technique based on the arm angular position (and velocity) feedback and EKF estimated SMA wire stress and temperature. The state vector estimates help reduce or avoid the undesirable and inefficient overshoot problem in SMA one-way actuation control.


2021 ◽  
Vol 26 (3) ◽  
pp. 209-225
Author(s):  
Zhengyu Liu ◽  
Yongheng Zhang ◽  
Xinxin Zhang ◽  
Huaihong Wang ◽  
Lichao Nie ◽  
...  

In recent decades, the DC resistivity method has been applied to geophysical monitoring because of its sensitivity to hydrogeological properties. However, existing inversion algorithms cannot give a reasonable image if fluid migration is sudden and unpredictable. Additionally, systematic or measurement errors can severely interfere with accurate object location. To address these issues, we propose an improved time series inversion method for cross-hole electrical resistivity tomography (cross-hole ERT) based on the Extended Kalman Filter (EKF). Traditional EKF includes two steps to obtain the current model state: prediction and correction. We improved the prediction step by introducing the grey time series prediction method to create a new regular model sequence that can infer the potential trend of underground resistivity changes and provide a prior estimation state for reference during the next moment. To include more current information in the prior estimation state and decrease the non-uniqueness, the prediction model needs to be further updated by the least-squares method. For the correction step, we used single time-step multiple filtering to better deal with the case of sudden and rapid changes. We designed three different numerical tests simulating rapid changes in a fluid to validate the proposed method. The proposed method can capture rapid changes in the groundwater transport rate and direction of the groundwater movement for real-time imaging. Model and field experiments were performed. The inversion results of the model experiment were generally consistent with the results of dye tracing, and the groundwater behavior in the field experiment was consistent with the predicted groundwater evolution process.


2021 ◽  
Author(s):  
Xiaoxiong Zhang ◽  
Jia He ◽  
Xugang Hua ◽  
Zhengqing Chen ◽  
Ou Yang

Abstract To date, a number of parameter identification methods have been developed for the purpose of structural health monitoring and vibration control. Among them, the extended Kalman filter (EKF) series methods are attractive in view of the efficient unbiased estimation in recursive manner. However, most of these methods are performed on the premise that the parameters are time-invariant and/or the loadings are known. To circumvent the aforementioned limitations, an online EKF with unknown input (OEKF-UI) approach is proposed in this paper for the identification of time-varying parameters and the unknown excitation. A revised observation equation is obtained with the aid of projection matrix. To capture the changes of structural parameters in real-time, an online tracking matrix (OTM) associated with the time-varying parameters is introduced and determined via an optimization procedure. Then, based on the principle of EKF, the recursive solution of structural states including the time-variant parameters can be analytically derived. Finally, using the estimated structural states, the unknown inputs are identified by means of least-squares estimation (LSE) at the same time-step. The effectiveness of the proposed approach is validated via linear and nonlinear numerical examples with the consideration of parameters being varied abruptly.


Sign in / Sign up

Export Citation Format

Share Document