Troxerutin-mediated C9 inhibition is a disease-modifying treatment for inflammatory arthritis.

Author(s):  
Debasis Sahu ◽  
Subasa Bishwal ◽  
Md. Zubbair Malik ◽  
Sukanya Sahu ◽  
Sandeep Kaushik ◽  
...  

Abstract Troxerutin (TXR) is a phytochemical reported to possess anti-inflammatory and hepatoprotective effects. In this study, we aimed to exploit anti-arthritic properties of TXR using an adjuvant induced arthritic (AIA) rat model. AIA induced rats showed highest arthritis score at disease onset and by oral administration of TXR (50, 100, 200 mg/kg body weight), reduced to basal level in a dose dependent manner. Isobaric tag for relative and absolute quantitative (iTRAQ) proteomics tool was employed to identify deregulated joint homogenate proteins in AIA and TXR treated rats to decipher probable mechanism of the TXR action in arthritis. iTRAQ analysis identified a set of 434 joint homogenate proteins with 65 deregulated proteins (log2 case/control ≥ 1.5) in AIA. Expressions of a set of important proteins (AAT, T-kininogen, vimentin, desmin, and nucleophosmin) that could classify AIA from healthy were validated using Western blot analysis. Western blot data corroborated proteomics findings. In silico protein-protein interaction study of joint homogenate proteome revealed that complement component 9 (C9), the major building blocks of the membrane attack complex (MAC) responsible for sterile inflammation, gets perturbed in AIA. Our dosimetry study suggests that a TXR dose of 200 mg/kg body weight for 15 days is sufficient to bring the arthritis score to basal levels in AIA rats. We have shown the importance of TXR as an anti-arthritis agent in AIA model and after additional investigation its arthritis ameliorating properties could be exploited for clinical usability.

2020 ◽  
Author(s):  
Debasis Sahu ◽  
Subasa Chandra Bishwal ◽  
Md. Zubbair Malik ◽  
Sukanya Sahu ◽  
Sandeep Rai Kaushik ◽  
...  

AbstractTroxerutin (TXR), is a phytochemical reported to possess anti-inflammatory and hepatoprotective effects. In this study, we aimed to exploit anti-arthritic properties of TXR using an adjuvant induced arthritic (AIA) rat model. AIA induced rats showed highest arthritis score at disease onset and by oral administration of TXR (50, 100, 200 mg/kg body weight), reduced to basal level in a dose dependent manner. Isobaric tag for relative and absolute quantitative (iTRAQ) proteomics tool was employed to identify deregulated joint homogenate proteins in AIA and TXR treated rats to decipher probable mechanism of the TXR action in arthritis. iTRAQ analysis identified a set of 434 joint homogenate proteins with 65 deregulated proteins (log2 case/control ≥1.5) in AIA. Expressions of a set of important proteins (AAT, T-kininogen, vimentin, desmin, and nucleophosmin) that could classify AIA from healthy were validated using Western blot analysis. Western blot data corroborated proteomics findings. In silico protein-protein interaction study of joint homogenate proteome revealed that complement component 9, the major building blocks of the membrane attack complex (MAC) responsible for sterile inflammation, gets perturbed in AIA. Our dosimetry study suggests that a TXR dose of 200 mg/kg body weight for 15 days is sufficient to bring the arthritis score to basal levels in AIA rats. We have shown the importance of TXR as an anti-arthritis agent in AIA model and after additional investigation its arthritis ameliorating properties could be exploited for clinical usability.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_1) ◽  
Author(s):  
Karolina E Zaborska ◽  
Eumee K Cha ◽  
Darline Garibay ◽  
Praveen K Sethupathy ◽  
Bethany P Cummings

PVAT is a critical regulator of vascular contractility and its dysfunction contributes to obesity-induced hypertension (HTN). Bariatric surgery, such as vertical sleeve gastrectomy (VSG), causes high rates of HTN remission prior to weight loss, and rescues PVAT function by increasing nitric oxide (NO) production. We have previously validated a VSG mouse model that recapitulates the body weight-independent lowering of blood pressure. VSG increases bile acid (BA) signaling through the BA receptor, TGR5. TGR5 stimulates NO production from endothelial cells (ECs) but the role of TGR5 signaling in adipocyte NO production is unknown. We hypothesized that VSG increases NO bioavailability within PVAT in a TGR5-dependent manner. High fat diet (HFD)-fed male C57BLmice underwent VSG or sham surgery ( n =4-6) Sham (S) mice were food restricted to match body weight to VSG mice. Vascular contractility was reduced in VSG mice (Max contraction (%): S: 30±2, VSG: 23±3; P <0.05). To assess the role of TGR5 on NO production within PVAT, we performed western blotting on mesenteric PVAT from VSG or sham-operated HFD-fed TGR5 WT and KO mice. eNOS phosphorylation was increased in PVAT in VSG WT, but not VSG KO (western blot quantification (AU): S WT: 1.0±0.1, VSG WT: 1.3±0.1, S KO: 1.1±0, VSG KO: 1.0±0.1; P <0.05). To determine how TGR5 regulates PVAT NO production, we assessed the impact of TGR5 on microRNA-21 (miR-21) expression. MiR-21 stimulates NO production in ECs but its role in adipocytes in unknown. Thus, we hypothesized that TGR5 regulates NO production within PVAT by upregulating miR-21. MiR-21 expression was increased in PVAT from VSG-operated TGR5 WT mice but not KO compared to sham controls (western blot quantification (AU): S WT: 0.9±0.1, VSG WT: 2.1±0.5, S KO: 0.7±0.6, VSG KO: 0.6±0.1; P <0.05). We further investigated whether TGR5 activation and miR-21 overexpression stimulate NO production in adipocytes. Mature 3T3-L1 adipocytes were treated with INT-777 or transfected with miR-21 mimic. TGR5 activation and miR-21 overexpression increased eNOS phosphorylation ( P <0.05). In conclusion, our data suggest that VSG increases NO bioavailability in PVAT by activating adipocyte TGR5 signaling and upregulating miR-21 expression.


2019 ◽  
Vol 26 (12) ◽  
pp. 910-918
Author(s):  
Kamal U. Zaidi ◽  
Firoz N. Khan ◽  
Sharique A. Ali ◽  
Kausar P. Khan

Background: Melanin plays a crucial role in camouflage, social communication and protection against harmful ultraviolet radiations. Melanin is synthesized by melanocytes through melanogenesis and several intrinsic and extrinsic factors are involved during the process. Any change occuring in the normal melanogenesis process can cause severe pigmentation problems of hypopigmentation or hyperpigmentation. Objective: The present study is based on the evaluation of the effect of thymoquinone on melanogenesis and their possible mechanism of action using the B16F10 melanoma cell line for the production via blocking signaling pathways. Methods: Phase contrast microscopy, cell viability, tyrosinase activity, melanin content and western blot analysis were used in the present study. Results: In the present investigation, cultured melanocytes exhibit that the stimulation of melanin synthesis when treated with thymoquinone. Tyrosinase activity and melanin production in B16F10 melanoma cell line was increased in doze-dependent manner. In western blot, we investigated the involvement of the cAMP/PKA pathway in thymoquinone induced melanogenesis. It was observed protein kinase inhibitors PKA, PKC, PKB and MEK1 decreased the stimulatory effects of thymoquinone from 11.45- fold value to 8.312, 6.631, 4.51, and 7.211-fold value, respectively. However, the results also prove that thymoquinone may partially induce tyrosinase expression via PKA, PKB, PKC and MEK1 signaling pathways. Conclusion: The present finding proposed that thymoquinone is a protective challenger for melanogenesis and it might be useful for the treatment of hypopigmentary disorders.


Author(s):  
Hongtao Li ◽  
Peng Chen ◽  
Lei Chen ◽  
Xinning Wang

Background: Nuclear factor kappa B (NF-κB) is usually activated in Wilms tumor (WT) cells and plays a critical role in WT development. Objective: The study purpose was to screen a NF-κB inhibitor from natural product library and explore its effects on WT development. Methods: Luciferase assay was employed to assess the effects of natural chemical son NF-κB activity. CCK-8 assay was conducted to assess cell growth in response to naringenin. WT xenograft model was established to analyze the effect of naringenin in vivo. Quantitative real-time PCR and Western blot were performed to examine the mRNA and protein levels of relative genes, respectively. Results: Naringenin displayed significant inhibitory effect on NF-κB activation in SK-NEP-1 cells. In SK-NEP-1 and G-401 cells, naringenin inhibited p65 phosphorylation. Moreover, naringenin suppressed TNF-α-induced p65 phosphorylation in WT cells. Naringenin inhibited TLR4 expression at both mRNA and protein levels in WT cells. CCK-8 staining showed that naringenin inhibited cell growth of the two above WT cells in dose-and time-dependent manner, whereas Toll-like receptor 4 (TLR4) over expression partially reversed the above phenomena. Besides, naringenin suppressed WT tumor growth in dose-and time-dependent manner in vivo. Western blot found that naringenin inhibited TLR4 expression and p65 phosphorylation in WT xenograft tumors. Conclusion: Naringenin inhibits WT development viasuppressing TLR4/NF-κB signaling


2018 ◽  
Vol 18 (2) ◽  
pp. 255-262 ◽  
Author(s):  
Aikebaier Maimaiti ◽  
Amier Aili ◽  
Hureshitanmu Kuerban ◽  
Xuejun Li

Aims: Gallic acid (GA) is generally distributed in a variety of plants and foods, and possesses cell growth-inhibiting activities in cancer cell lines. In the present study, the impact of GA on cell viability, apoptosis induction and possible molecular mechanisms in cultured A549 lung carcinoma cells was investigated. Methods: In vitro experiments showed that treating A549 cells with various concentrations of GA inhibited cell viability and induced apoptosis in a dose-dependent manner. In order to understand the mechanism by which GA inhibits cell viability, comparative proteomic analysis was applied. The changed proteins were identified by Western blot and siRNA methods. Results: Two-dimensional electrophoresis revealed changes that occurred to the cells when treated with or without GA. Four up-regulated protein spots were clearly identified as malate dehydrogenase (MDH), voltagedependent, anion-selective channel protein 1(VDAC1), calreticulin (CRT) and brain acid soluble protein 1(BASP1). VDAC1 in A549 cells was reconfirmed by western blot. Transfection with VDAC1 siRNA significantly increased cell viability after the treatment of GA. Further investigation showed that GA down regulated PI3K/Akt signaling pathways. These data strongly suggest that up-regulation of VDAC1 by GA may play an important role in GA-induced, inhibitory effects on A549 cell viability.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Velma T. E. Aho ◽  
Madelyn C. Houser ◽  
Pedro A. B. Pereira ◽  
Jianjun Chang ◽  
Knut Rudi ◽  
...  

Abstract Background Previous studies have reported that gut microbiota, permeability, short-chain fatty acids (SCFAs), and inflammation are altered in Parkinson’s disease (PD), but how these factors are linked and how they contribute to disease processes and symptoms remains uncertain. This study sought to compare and identify associations among these factors in PD patients and controls to elucidate their interrelations and links to clinical manifestations of PD. Methods Stool and plasma samples and clinical data were collected from 55 PD patients and 56 controls. Levels of stool SCFAs and stool and plasma inflammatory and permeability markers were compared between patients and controls and related to one another and to the gut microbiota. Results Calprotectin was increased and SCFAs decreased in stool in PD in a sex-dependent manner. Inflammatory markers in plasma and stool were neither intercorrelated nor strongly associated with SCFA levels. Age at PD onset was positively correlated with SCFAs and negatively correlated with CXCL8 and IL-1β in stool. Fecal zonulin correlated positively with fecal NGAL and negatively with PD motor and non-motor symptoms. Microbiota diversity and composition were linked to levels of SCFAs, inflammatory factors, and zonulin in stool. Certain relationships differed between patients and controls and by sex. Conclusions Intestinal inflammatory responses and reductions in fecal SCFAs occur in PD, are related to the microbiota and to disease onset, and are not reflected in plasma inflammatory profiles. Some of these relationships are distinct in PD and are sex-dependent. This study revealed potential alterations in microbiota-host interactions and links between earlier PD onset and intestinal inflammatory responses and reduced SCFA levels, highlighting candidate molecules and pathways which may contribute to PD pathogenesis and clinical presentation and which warrant further investigation.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Chen Zhang ◽  
Xiao Shi ◽  
Zhongping Su ◽  
Chao Hu ◽  
Xianmin Mu ◽  
...  

Abstract Background Acetaminophen (APAP) overdose causes hepatotoxicity and even acute liver failure. Recent studies indicate that sterile inflammation and innate immune cells may play important roles in damage-induced hepatocytes regeneration and liver repair. The scavenger receptor CD36 has its crucial functions in sterile inflammation. However, the roles of CD36 in APAP induced acute liver injury remain unclear and warrant further investigation. Methods WT C57BL/6 J and CD36−/− mice were intraperitoneally injected with APAP (300 mg/kg) after fasting for 16 h. Liver injury was evaluated by serum alanine aminotransferase (ALT) level and liver tissue hematoxylin and eosin (H&E) staining. Liver inflammatory factor expression was determined by real-time polymerase chain reaction (PCR). The protein adducts forming from the metabolite of APAP and the metabolism enzyme cytochrome P450 2E1 (CYP2E1) levels were measured by Western blot. Liver infiltrating macrophages and neutrophils were characterized by flow cytometry. RNA sequencing and Western blot were used to evaluate the effect of damage-associated molecular patterns (DAMP) molecule high mobility group B1 (HMGB1) on WT and CD36−/− macrophages. Moreover, PP2, a Src kinase inhibitor, blocking CD36 signaling, was applied in APAP model. Results The expression of CD36 was increased in the liver of mice after APAP treatment. Compared with WT mice, APAP treated CD36−/− mice show less liver injury. There was no significant difference in APAP protein adducts and CYP2E1 expression between these two strains. However, reduced pro-inflammatory factor mRNA expression and serum IL-1β level were observed in APAP treated CD36−/− mice as well as infiltrating macrophages and neutrophils. Moreover, CD36 deficiency impaired the activation of c-Jun N-terminal kinase (JNK) caused by APAP. Interestingly, the lack of CD36 reduced the activation of extracellular regulated protein kinases (Erk) and v-akt murine thymoma viral oncogene homolog (Akt) induced by HMGB1. RNA transcription sequencing data indicated that HMGB1 has a different effect on WT and CD36−/− macrophages. Furthermore, treatment with PP2 attenuated APAP induced mouse liver injury. Conclusion Our data demonstrated that CD36 deficiency ameliorated APAP-induced acute liver injury and inflammatory responses by decreasing JNK activation. CD36 might serve as a new target to reduce acute liver injury.


1992 ◽  
Vol 284 (1) ◽  
pp. 169-176 ◽  
Author(s):  
T R Hughes ◽  
S J Piddlesden ◽  
J D Williams ◽  
R A Harrison ◽  
B P Morgan

The membrane attack complex (MAC) of complement in humans is regulated by several membrane-bound proteins; however, no such proteins have so far been described in other species. Here we report the isolation and characterization of a rat erythrocyte membrane glycoprotein of molecular mass 21 kDa which inserts into cell membranes and is a potent inhibitor of the rat MAC. This protein, here called rat inhibitory protein (RIP), was first partially purified by column chromatography from a butanol extract of rat erythrocyte membranes. Monoclonal antibodies (Mabs) were raised against RIP and used for its affinity purification. Affinity-purified RIP was shown to inhibit in a dose-dependent manner the cobra venom factor (CVF)-mediated ‘reactive’ lysis of guinea pig erythrocytes by rat complement. Conversely, the anti-RIP MAbs 6D1 and TH9 were shown to markedly enhance the CVF-mediated lysis of rat erythrocytes by rat complement. RIP acted late in the assembly of the MAC (at or after the C5b-8 stage) and was releasable from the membranes of rat erythrocytes by phosphatidylinositol-specific phospholipase C. These features, together with its size, deglycosylation pattern and N-terminal amino acid sequence, lead us to conclude that RIP is the rat homologue of the human MAC-inhibitory protein CD59 antigen.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Qian Liu ◽  
Lijuan Guo ◽  
Hongyan Qi ◽  
Meng Lou ◽  
Rui Wang ◽  
...  

AbstractRibonucleotide reductase (RR) is a unique enzyme for the reduction of NDPs to dNDPs, the building blocks for DNA synthesis and thus essential for cell proliferation. Pan-cancer profiling studies showed that RRM2, the small subunit M2 of RR, is abnormally overexpressed in multiple types of cancers; however, the underlying regulatory mechanisms in cancers are still unclear. In this study, through searching in cancer-omics databases and immunohistochemistry validation with clinical samples, we showed that the expression of MYBL2, a key oncogenic transcriptional factor, was significantly upregulated correlatively with RRM2 in colorectal cancer (CRC). Ectopic expression and knockdown experiments indicated that MYBL2 was essential for CRC cell proliferation, DNA synthesis, and cell cycle progression in an RRM2-dependent manner. Mechanistically, MYBL2 directly bound to the promoter of RRM2 gene and promoted its transcription during S-phase together with TAF15 and MuvB components. Notably, knockdown of MYBL2 sensitized CRC cells to treatment with MK-1775, a clinical trial drug for inhibition of WEE1, which is involved in a degradation pathway of RRM2. Finally, mouse xenograft experiments showed that the combined suppression of MYBL2 and WEE1 synergistically inhibited CRC growth with a low systemic toxicity in vivo. Therefore, we propose a new regulatory mechanism for RRM2 transcription for CRC proliferation, in which MYBL2 functions by constituting a dynamic S-phase transcription complex following the G1/early S-phase E2Fs complex. Doubly targeting the transcription and degradation machines of RRM2 could produce a synthetic inhibitory effect on RRM2 level with a novel potential for CRC treatment.


Sign in / Sign up

Export Citation Format

Share Document