scholarly journals Compositional and Drug-Resistance Profiling of Pathogens in Patients with Severe Acute Pancreatitis

2020 ◽  
Author(s):  
Ning Fan ◽  
Yong Hu ◽  
Shengjie Liu ◽  
Guang Zhao ◽  
Lanju Sun ◽  
...  

Abstract Background: Infection is one of the important causes of death in patients with severe acute pancreatitis (SAP), but the bacterial spectrum and antibiotic resistance are constantly changing. Making good use of antibiotics and controlling multi-drug-resistant (MDR) bacterial infections are important steps in improving the cure rate of SAP.Methods: A total of 171 patients were enrolled in this study; the abdominal drainage fluid, sputum, blood, bile, deep venous catheter and urine of patients were cultured, identified and tested for resistance with a blood culture apparatus and microbiological analyzer. The associated results and hospitalization data were analyzed. Results: A total of 461 strains of pathogenic bacteria were detected, including 223 (48.4%) gram-negative bacterial strains, 190 (41.2%) gram-positive bacterial strains and 48 (10.4%) fungal strains. The detection rates of resistance in gram-negative and gram-positive bacterial strains were 48.0% (107/223) and 25.3% (48/190), respectively. There were significant differences between the MDR group and the non-MDR group for the factors of precautionary antibiotic use, kinds of antibiotics used, receipt of carbapenem, tracheal intubation, hemofiltration and number of hospitalization days in the intensive care unit. Unconditional logistic regression revealed 2 risk factors for MDR bacterial infection. Conclusions: Our results illustrate that gram-negative bacteria were the most common pathogens in SAP infection, and the proportion of gram-positive bacteria increased notably. The rate of antibiotic resistance was higher than previously reported. Unconditional logistic regression analysis showed that using more types of antibiotics and the number of hospitalization days in the ICU were the risk factors associated with MDR bacterial infection.

2020 ◽  
Author(s):  
Ning Fan ◽  
Yong Hu ◽  
Hong Shen ◽  
Shengjie Liu ◽  
Guang Zhao ◽  
...  

Abstract Background: Infection is one of the important causes of death in patients with severe acute pancreatitis (SAP) , but the bacterial spectrum and antibiotic resistance are constantly changing. Making good use of antibiotics and controlling multi-drug-resistant (MDR) bacterial infections are of vital importance in improving the cure rate of SAP. We conducted a retrospective study in the hope of providing references for antibiotic selection and control of drug-resistant bacteria. Methods: Retrospective analysis was performed on the data of patients hospitalized in our hospital due to acute pancreatitis (AP) in the past 5 years. General data were classified and statistically analyzed. Subsequently, the bacterial spectrum characteristics and the data related to drug-resistant bacterial infection of 569 AP patients were analyzed. Finally, unconditional logistic regression analysis was conducted to analyze the risk factors of MDR infection. Results: A total of 398 patients were enrolled in this study and the hospitalization data and associated results were analyzed. A total of 461 strains of pathogenic bacteria were detected, including 223 (48.4%) gram-negative bacterial strains, 190 (41.2%) gram-positive bacterial strains and 48 (10.4%) fungal strains. The detection rates of resistance in gram-negative and gram-positive bacterial strains were 48.0% (107/223) and 25.3% (48/190), respectively. There were significant differences between the MDR group and the non-MDR group for the factors of precautionary antibiotic use, kinds of antibiotics used, receipt of carbapenem, tracheal intubation, hemofiltration and number of hospitalization days in the intensive care unit. Unconditional logistic regression revealed 2 risk factors for MDR bacterial infection. Conclusions: Our results illustrate that gram-negative bacteria were the most common pathogens in SAP infection, and the proportion of gram-positive bacteria increased notably. The rate of antibiotic resistance was higher than previously reported. Unconditional logistic regression analysis showed that using more types of antibiotics and the number of hospitalization days in the ICU were the risk factors associated with MDR bacterial infection.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ning Fan ◽  
Yong Hu ◽  
Hong Shen ◽  
Shengjie Liu ◽  
Guang Zhao ◽  
...  

Abstract Background Infection is one of the important causes of death in patients with severe acute pancreatitis (SAP), but the bacterial spectrum and antibiotic resistance are constantly changing. Making good use of antibiotics and controlling multi-drug-resistant (MDR) bacterial infections are of vital importance in improving the cure rate of SAP. We conducted a retrospective study in the hope of providing references for antibiotic selection and control of drug-resistant bacteria. Methods Retrospective analysis was performed on the data of patients hospitalized in our hospital due to acute pancreatitis (AP) in the past 5 years. General data were classified and statistically analyzed. Subsequently, the bacterial spectrum characteristics and the data related to drug-resistant bacterial infection of 569 AP patients were analyzed. Finally, unconditional logistic regression analysis was conducted to analyze the risk factors of MDR infection. Results A total of 398 patients were enrolled in this study and the hospitalization data and associated results were analyzed. A total of 461 strains of pathogenic bacteria were detected, including 223 (48.4%) gram-negative bacterial strains, 190 (41.2%) gram-positive bacterial strains and 48 (10.4%) fungal strains. The detection rates of resistance in gram-negative and gram-positive bacterial strains were 48.0% (107/223) and 25.3% (48/190), respectively. There were significant differences between the MDR group and the non-MDR group for the factors of precautionary antibiotic use, kinds of antibiotics used, receipt of carbapenem, tracheal intubation, hemofiltration and number of hospitalization days in the intensive care unit. Unconditional logistic regression revealed 2 risk factors for MDR bacterial infection. Conclusions Our results illustrate that gram-negative bacteria were the most common pathogens in SAP infection, and the proportion of gram-positive bacteria increased notably. The rate of antibiotic resistance was higher than previously reported. Unconditional logistic regression analysis showed that using more types of antibiotics and the number of hospitalization days in the ICU were the risk factors associated with MDR bacterial infection.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Veronica Folliero ◽  
Gianluigi Franci ◽  
Federica Dell’Annunziata ◽  
Rosa Giugliano ◽  
Francesco Foglia ◽  
...  

Microbial biofilms pose a serious threat to patients requiring medical devices (MDs). Prolonged periods of implantation carry a high risk of device-related infections (DRIs). Patients with DRIs often have negative outcomes following the failure of antibiotic treatment. Resistant DRIs are mainly due to the MDs contamination by bacteria producing biofilm. The present study aimed to detect biofilm formation among MD bacterial isolates and to explore their antibiotic resistance profile. The study was conducted on 76 MDs, collected at University Hospital of Campania “Luigi Vanvitelli,” between October 2019 and September 2020. Identification of isolates and antibiotic susceptibility testing were performed using Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) and Phoenix Becton Dickinson, respectively. Biofilm-forming abilities were assessed using the tissue culture plate (TCP) method. Among the 94 MDs isolated strains, 42.7% were Gram-positive, 40.3% Gram-negative, and 17% Candida species. Among 78 bacterial strains, 43.6% were non-biofilm producers while 56.4% produced biofilms. All biofilm producing isolates were sensitive to a limited spectrum of antibiotic classes. All moderate and strong biofilm producers and 81% of weak biofilm producers were Multidrug Resistance (MDR) strains. In contrast, among non-biofilm producers, only 11.8% were classified as MDR strains. Our results highlighted that Sulfamides and Glycopeptides for the major Gram-positive strains and Fluoroquinolones, Carbapenems, and Aminoglycosides for the most represented Gram-negative isolates could be the most suitable therapeutic choice for most biofilm-DRIs.


2019 ◽  
Vol 4 (2) ◽  
pp. 69-74
Author(s):  
Ghazaleh Ilbeigi ◽  
Ashraf Kariminik ◽  
Mohammad Hasan Moshafi

Introduction: Given the increasing rate of antibiotic resistance among bacterial strains, many researchers have been working to produce new and efficient and inexpensive antibacterial agents. It has been reported that some nanoparticles may be used as novel antimicrobial agents.Here, we evaluated antibacterial properties of nickel oxide (NiO) nanoparticles. Methods: NiO nanoparticles were synthesized using microwave method. In order to control the quality and morphology of nanoparticles, XRD (X-ray diffraction) and SEM (scanning electronmicroscope) were utilized. The antibacterial properties of the nanoparticles were assessed against eight common bacterial strains using agar well diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were measured. Antibiotic resistance pattern of the bacteria to nine antibiotics was obtained by Kirby-Bauer disk diffusion method. Results: The crystalline size and diameter (Dc) of NiO nanoparticles were obtained 40-60 nm. The nanoparticles were found to inhibit the growth of both gram-positive and gram-negative bacteria with higher activity against gram-positive organisms. Among bacterial strains, maximum sensitivity was observed in Staphylococcus epidermidis with MIC and MBC of 0.39 and 0.78 mg/mL, respectively. The bacteria had high resistance to cefazolin, erythromycin, rifampicin,ampicillin, penicillin and streptomycin.Conclusion: NiO nanoparticles exhibited remarkable antibacterial properties against gram positive and gram-negative bacteria and can be a new treatment for human pathogenic and antibiotic-resistant bacteria.


Author(s):  
Adenike A. O. Ogunshe

Problem of Research: Food safety implications of fermented-condiment-adapted bacterial strains, regarding their intrinsic, acquired and transferable antibiotic resistance potentials are yet to be reportedly fully ascertained. Aim: To determine food safety implications of culturalable fermented-condiment-adapted bacterial strains. Methodology: Using the Kirby-Bauer agar disc-diffusion method, phenotypic multi-antibiotic-drug-in-discs resistance (MADIDR) profiles of 138 fermented-condiment-borne (Gram-positive = 71; Gram-negative = 67) bacterial strains from iru, ogiri and okpehe were evaluated by in-discs antibiotics, which are commonly administered in human and animal prophylaxis and therapy. Results: None of the fermented-condiment-adapted bacterial strains was totally susceptible to the test in-discs antibiotics; just five (3.62%: n = 0.7%: Gram-positive: n = 2.9% Gram-negative) strains were mono-resistant, while six (4.37%) were totally or pandrug-resistant (PDR). Of the remaining 92.03% fermented-condiment-adapted-bacterial strains, 6.57% exhibited co-antibiotic drug resistance (CDR); 43.8% (Gram-positive = 17.52%; Gram-negative = 26.28%) were multi-drug resistant (MDR); and 41.55% (Gram-positive = 25.55%: Gram-negative = 16.0%) displayed extensive-drug resistance (XDR). A total of 43.48% Gram-positive and 36.96% Gram-negative bacterial strains were multi-resistant to between four and eight of the test in-discs antibiotics. Overall, augmentin (95.8%), cloxacillin (94.4%) cotrimoxazole (71.8%) and erythromycin (71.8%) were the most-resisted in-discs antibiotics by the condiment-adapted Gram-positive bacteria, while cloxacillin (93.8%), ciprofloxacin (80.0%) and augmentin (76.9%) were the most-resisted in-discs antibiotics by Gram-negative bacteria. Conclusion: Tremendous multi and extensive resistance to in-discs antibiotics were recorded among fermented-food-condiment-environment-adapted bacteria, indicating a serious food safety challenge in the ethnic cottage-food industries, food chain, and the community. Thus, preliminary screening for antibiotic resistance in food-condiment-borne bacteria, using in-discs antibiotics is strongly suggested.


2020 ◽  
Author(s):  
Nusrat Abedin ◽  
Abdullah Hamed A Alshehri ◽  
Ali M A Almughrbi ◽  
Olivia Moore ◽  
Sheikh Alyza ◽  
...  

Antimicrobial resistance (AMR) has become one of the more serious threats to the global health. The emergence of bacteria resistant to antimicrobial substances decreases the potencies of current antibiotics. Consequently, there is an urgent and growing need for the developing of new classes of antibiotics. Three prepared novel iron complexes have a broad-spectrum antimicrobial activity with minimum bactericidal concentration (MBC) values ranging from 3.5 to 10 mM and 3.5 to 40 mM against Gram-positive and Gram-negative bacteria with antimicrobial resistance phenotype, respectively. Time-kill studies and quantification of the extracellular DNA confirmed the bacteriolytic mode of action of the iron-halide compounds. Additionally, the novel complexes showed significant antibiofilm activity against the tested pathogenic bacterial strains at concentrations lower than the MBC. The cytotoxic effect of the complexes on different mammalian cell lines show sub-cytotoxic values at concentrations lower than the minimum bactericidal concentrations.


Author(s):  
Mariana Chumbita ◽  
Pedro Puerta-Alcalde ◽  
Carlota Gudiol ◽  
Nicole Garcia-Pouton ◽  
Júlia Laporte-Amargós ◽  
...  

Objectives: We analyzed risk factors for mortality in febrile neutropenic patients with bloodstream infections (BSI) presenting with septic shock and assessed the impact of empirical antibiotic regimens. Methods: Multicenter retrospective study (2010-2019) of two prospective cohorts comparing BSI episodes in patients with or without septic shock. Multivariate analysis was performed to identify independent risk factors for mortality in episodes with septic shock. Results: Of 1563 patients with BSI, 257 (16%) presented with septic shock. Those patients with septic shock had higher mortality than those without septic shock (55% vs 15%, p<0.001). Gram-negative bacilli caused 81% of episodes with septic shock; gram-positive cocci, 22%; and Candida species 5%. Inappropriate empirical antibiotic treatment (IEAT) was administered in 17.5% of septic shock episodes. Empirical β-lactam combined with other active antibiotics was associated with the lowest mortality observed. When amikacin was the only active antibiotic, mortality was 90%. Addition of empirical specific gram-positive coverage had no impact on mortality. Mortality was higher when IEAT was administered (76% vs 51%, p=0.002). Age >70 years (OR 2.3, 95% CI 1.2-4.7), IEAT for Candida spp. or gram-negative bacilli (OR 3.8, 1.3-11.1), acute kidney injury (OR 2.6, 1.4-4.9) and amikacin as the only active antibiotic (OR 15.2, 1.7-134.5) were independent risk factors for mortality, while combination of β-lactam and amikacin was protective (OR 0.32, 0.18-0.57). Conclusions: Septic shock in febrile neutropenic patients with BSI is associated with extremely high mortality, especially when IEAT is administered. Combination therapy including an active β-lactam and amikacin results in the best outcomes.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Hessa H. Al-Rasheed ◽  
Monirah Al Alshaikh ◽  
Jamal M. Khaled ◽  
Naiyf S. Alharbi ◽  
Ayman El-Faham

Novel series of 4,6-disubstituted-1,3,5-triazines containing hydrazone derivatives were synthesized employing ultrasonic irradiation and conventional heating. The ultrasonication gave the target products in higher yields and purity in shorter reaction time compared with the conventional method. IR, NMR (H 1 and C 13), elemental analysis, and LC-MS confirmed the structures of the new products. The antimicrobial and antifungal activities were evaluated for all the prepared compounds against some selected Gram-positive and Gram-negative bacterial strains. The results showed that only two compounds 7i (pyridine derivative) and 7k (4-chlorobenzaldehyde derivative) displayed biological activity against some Gram-positive and Gram-negative bacteria, while the rest of the tested compounds did not display any antifungal activity.


2011 ◽  
Vol 8 (1) ◽  
pp. 305-311 ◽  
Author(s):  
Priyanka Kamaria ◽  
N. Kawathekar ◽  
Prerna Chaturvedi

In order to develop new antimicrobial agents, a series of Schiff bases of indole-3-aldehyde were synthesized by microwave assisted synthesis by takingDMFas solvent and evaluated for their antimicrobial activity. All the synthesized compounds were characterized byIR,1HNMRand mass spectral analysis. All compounds were tested against five gram positive and five gram negative bacterial strains and one fungal strain. All compounds exhibited better activity against gram positive strains than against gram negative strains and the compounds were found more active againstS.aureusandB.subtilis.


Sign in / Sign up

Export Citation Format

Share Document