Assessing Food Safety Implications of Multi Antibiotic Resistant Fermented-Food-Condiment-Environment-Adapted Bacteria

Author(s):  
Adenike A. O. Ogunshe

Problem of Research: Food safety implications of fermented-condiment-adapted bacterial strains, regarding their intrinsic, acquired and transferable antibiotic resistance potentials are yet to be reportedly fully ascertained. Aim: To determine food safety implications of culturalable fermented-condiment-adapted bacterial strains. Methodology: Using the Kirby-Bauer agar disc-diffusion method, phenotypic multi-antibiotic-drug-in-discs resistance (MADIDR) profiles of 138 fermented-condiment-borne (Gram-positive = 71; Gram-negative = 67) bacterial strains from iru, ogiri and okpehe were evaluated by in-discs antibiotics, which are commonly administered in human and animal prophylaxis and therapy. Results: None of the fermented-condiment-adapted bacterial strains was totally susceptible to the test in-discs antibiotics; just five (3.62%: n = 0.7%: Gram-positive: n = 2.9% Gram-negative) strains were mono-resistant, while six (4.37%) were totally or pandrug-resistant (PDR). Of the remaining 92.03% fermented-condiment-adapted-bacterial strains, 6.57% exhibited co-antibiotic drug resistance (CDR); 43.8% (Gram-positive = 17.52%; Gram-negative = 26.28%) were multi-drug resistant (MDR); and 41.55% (Gram-positive = 25.55%: Gram-negative = 16.0%) displayed extensive-drug resistance (XDR). A total of 43.48% Gram-positive and 36.96% Gram-negative bacterial strains were multi-resistant to between four and eight of the test in-discs antibiotics. Overall, augmentin (95.8%), cloxacillin (94.4%) cotrimoxazole (71.8%) and erythromycin (71.8%) were the most-resisted in-discs antibiotics by the condiment-adapted Gram-positive bacteria, while cloxacillin (93.8%), ciprofloxacin (80.0%) and augmentin (76.9%) were the most-resisted in-discs antibiotics by Gram-negative bacteria. Conclusion: Tremendous multi and extensive resistance to in-discs antibiotics were recorded among fermented-food-condiment-environment-adapted bacteria, indicating a serious food safety challenge in the ethnic cottage-food industries, food chain, and the community. Thus, preliminary screening for antibiotic resistance in food-condiment-borne bacteria, using in-discs antibiotics is strongly suggested.

2019 ◽  
Vol 4 (2) ◽  
pp. 69-74
Author(s):  
Ghazaleh Ilbeigi ◽  
Ashraf Kariminik ◽  
Mohammad Hasan Moshafi

Introduction: Given the increasing rate of antibiotic resistance among bacterial strains, many researchers have been working to produce new and efficient and inexpensive antibacterial agents. It has been reported that some nanoparticles may be used as novel antimicrobial agents.Here, we evaluated antibacterial properties of nickel oxide (NiO) nanoparticles. Methods: NiO nanoparticles were synthesized using microwave method. In order to control the quality and morphology of nanoparticles, XRD (X-ray diffraction) and SEM (scanning electronmicroscope) were utilized. The antibacterial properties of the nanoparticles were assessed against eight common bacterial strains using agar well diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were measured. Antibiotic resistance pattern of the bacteria to nine antibiotics was obtained by Kirby-Bauer disk diffusion method. Results: The crystalline size and diameter (Dc) of NiO nanoparticles were obtained 40-60 nm. The nanoparticles were found to inhibit the growth of both gram-positive and gram-negative bacteria with higher activity against gram-positive organisms. Among bacterial strains, maximum sensitivity was observed in Staphylococcus epidermidis with MIC and MBC of 0.39 and 0.78 mg/mL, respectively. The bacteria had high resistance to cefazolin, erythromycin, rifampicin,ampicillin, penicillin and streptomycin.Conclusion: NiO nanoparticles exhibited remarkable antibacterial properties against gram positive and gram-negative bacteria and can be a new treatment for human pathogenic and antibiotic-resistant bacteria.


Author(s):  
Elaf Ayad Kadhem ◽  
Miaad Hamzah Zghair ◽  
Sarah , Hussam H. Tizkam, Shoeb Alahmad Salih Mahdi ◽  
Hussam H. Tizkam ◽  
Shoeb Alahmad

magnesium oxide nanoparticles (MgO NPs) were prepared by simple wet chemical method using different calcination temperatures. The prepared NPs were characterized by Electrostatic Discharge (ESD), Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD). It demonstrates sharp intensive peak with the increase of crystallinty and increase of the size with varying morphologies with respect to increase of calcination temperature. Antibacterial studies were done on gram negative bacteria (E.coli) and gram positive bacteria (S.aureus) by agar disc diffusion method. The zones of inhibitions were found larger for gram positive bacteria than gram negative bacteria, this mean, antibacterial MgO NPs activity more active on gram positive bacteria than gram negative bacteria because of the structural differences. It was found that antibacterial activity of MgO NPs was found it has directly proportional with their concentration.


2019 ◽  
Vol 2019 ◽  
pp. 1-4
Author(s):  
Yohannes Kelifa Emiru ◽  
Ebrahim Abdela Siraj ◽  
Tekleab Teka Teklehaimanot ◽  
Gedefaw Getnet Amare

Objective. To evaluate the antibacterial effects of the leaf latex of Aloe weloensis against infectious bacterial strains. Methods. The leaf latex of A. weloensis at different concentrations (400, 500, and 600 mg/ml) was evaluated for antibacterial activities using the disc diffusion method against some Gram-negative species such as Escherichia coli (ATCC 14700) and Pseudomonas aeruginosa (ATCC 35619) and Gram-positive such as Staphylococcus aureus (ATCC 50080) and Enterococcus fecalis (ATCC 4623). Results. The tested concentrations of the latex ranging between 400 and 600 mg·mL−1 showed significant antibacterial activity against bacterial strain. The highest dose (600 mg/ml) of A. weloensis leaf latex revealed the maximum activity (25.93 ± 0.066 inhibition zone) followed by the dose 500 mg/ml against S. aureus. The lowest antibacterial activity was observed by the concentration 400 mg/ml (5.03 ± 0.03) against E. coli. Conclusion. The results of the present investigation suggest that the leaf latex of A. weloensis can be used as potential leads to discover new drugs to control some bacterial infections.


2023 ◽  
Vol 83 ◽  
Author(s):  
S. Mumtaz ◽  
S. Mumtaz ◽  
S. Ali ◽  
H. M. Tahir ◽  
S. A. R. Kazmi ◽  
...  

Abstract Now a day’s multidrug resistance phenomenon has become the main cause for concern and there has been an inadequate achievement in the development of novel antibiotics to treat the bacterial infections. Therefore, there is an unmet need to search for novel adjuvant. Vitamin C is one such promising adjuvant. The present study was aimed to elucidate the antibacterial effect of vitamin C at various temperatures (4°C, 37°C and 50°C) and pH (3, 8, and 11), against Gram-positive and Gram-negative bacteria at various concentrations (5-20 mg/ml) through agar well diffusion method. Growth inhibition of all bacterial strains by vitamin C was concentration-dependent. Vitamin C significantly inhibited the growth of Gram-positive bacteria: Bacillus licheniformis (25.3 ± 0.9 mm), Staphylococcus aureus (22.0 ± 0.6 mm), Bacillus subtilis (19.3 ± 0.3 mm) and Gram-negative bacteria: Proteus mirabilis (27.67 ± 0.882 mm), Klebsiella pneumoniae (21.33±0.9 mm), Pseudomonas aeruginosa (18.0 ± 1.5 mm) and Escherichia coli (18.3 ± 0.3 mm). The stability of vitamin C was observed at various pH values and various temperatures. Vitamin C showed significant antibacterial activity at acidic pH against all bacterial strains. Vitamin C remained the stable at different temperatures. It was concluded that vitamin C is an effective and safe antibacterial agent that can be used in the future as an adjunct treatment option to combat infections in humans.


2011 ◽  
pp. 263-269 ◽  
Author(s):  
Aleksandra Velicanski ◽  
Dragoljub Cvetkovic ◽  
Sinisa Markov ◽  
Jelena Vulic ◽  
Sonja Djilas

Antibacterial activity of Beta vulgaris L. (beetroot) pomace extract (concentration 100 mg/ml) was tested against five Gram positive and seven Gram negative bacterial strains (reference cultures and natural isolates). Disc diffusion method with 15 ?l of extract and agar-well diffusion method with 50 and 100 ?l were used. Antibiotic (cefotaxime/clavulanic acid) was used as a control sample. The tested extract showed the highest activity against Staphylococcus aureus and Bacillus cereus, where clear zones (without growth) appeared. There was no any activity against other tested Gram-positive bacteria, except for Staphylococcus epidermidis, with a small zone of reduced growth. Growth of all tested Gram-negative bacteria was inhibited usually with 100 ?l of extract. The most susceptible were Citrobacter freundii and Salmonella typhymurium. The tested antibiotic gave clear, usually large zones for all tested strains except for Staphylococcus cohni spp. cohni, where only a zone of reduced growth appeared.


2020 ◽  
Vol 17 ◽  
Author(s):  
Srinu Bhoomandla ◽  
Phani Raja Kanuparthy ◽  
Rambabu Gundla ◽  
Ramana Reddy Bobbala

: A Three component Synthesis of novel 5-phenyl-2-(thiophen-2-yl)-4-(trifluoromethyl)-5H-indeno [1,2-b] [1,8] naphthyridin-6(11H)-one derivatives (4a-n) were prepared using 6-phenyl/(thiophen-2-yl)-4-(trifluoromethyl)pyridin-2-amine, 1H-indene-1,3(2H)-dione and aryl aldehyde using 40% aq. HF with good yield. All the synthesized compounds were screened against Gram-positive and Gram-negative bacterial strains and different Candida strains by well diffusion method. Compounds 4c, 4f and 4g showed promising activity on Bacillus subtilis strain and compounds 4c and 4g showed promising activity towards Candida albicans starains.


Antioxidants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 239 ◽  
Author(s):  
Tomasz M. Karpiński ◽  
Artur Adamczak

Fucoxanthin is a carotenoid produced by brown algae and diatoms. This compound has several biological properties such as antioxidant, anti-obesity, anti-diabetic, anticancer, and antimicrobial activities. Unfortunately, until now the latter effect has been poorly confirmed. The aim of this study was an evaluation of fucoxanthin activity against 20 bacterial species. Antimicrobial effect of fucoxanthin was determined by using the agar disc-diffusion and micro-dilution methods. The studied carotenoid acted against 13 bacteria growing in aerobic conditions. It was observed to have a significantly stronger impact on Gram-positive than Gram-negative bacteria. Mean zones of growth inhibition (ZOIs) for Gram-positive bacteria ranged between 9.0 and 12.2 mm, while for Gram-negative were from 7.2 to 10.2 mm. According to the agar disc-diffusion method, the highest activity of fucoxanthin was exhibited against Streptococcus agalactiae (mean ZOI 12.2 mm), Staphylococcus epidermidis (mean ZOI 11.2 mm), and Staphylococcus aureus (mean ZOI 11.0 mm), and in the microdilution test towards Streptococcus agalactiae with the minimal inhibitory concentration (MIC) of 62.5 µg/mL. On the other hand, fucoxanthin was not active against strict anaerobic bacteria.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Veronica Folliero ◽  
Gianluigi Franci ◽  
Federica Dell’Annunziata ◽  
Rosa Giugliano ◽  
Francesco Foglia ◽  
...  

Microbial biofilms pose a serious threat to patients requiring medical devices (MDs). Prolonged periods of implantation carry a high risk of device-related infections (DRIs). Patients with DRIs often have negative outcomes following the failure of antibiotic treatment. Resistant DRIs are mainly due to the MDs contamination by bacteria producing biofilm. The present study aimed to detect biofilm formation among MD bacterial isolates and to explore their antibiotic resistance profile. The study was conducted on 76 MDs, collected at University Hospital of Campania “Luigi Vanvitelli,” between October 2019 and September 2020. Identification of isolates and antibiotic susceptibility testing were performed using Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) and Phoenix Becton Dickinson, respectively. Biofilm-forming abilities were assessed using the tissue culture plate (TCP) method. Among the 94 MDs isolated strains, 42.7% were Gram-positive, 40.3% Gram-negative, and 17% Candida species. Among 78 bacterial strains, 43.6% were non-biofilm producers while 56.4% produced biofilms. All biofilm producing isolates were sensitive to a limited spectrum of antibiotic classes. All moderate and strong biofilm producers and 81% of weak biofilm producers were Multidrug Resistance (MDR) strains. In contrast, among non-biofilm producers, only 11.8% were classified as MDR strains. Our results highlighted that Sulfamides and Glycopeptides for the major Gram-positive strains and Fluoroquinolones, Carbapenems, and Aminoglycosides for the most represented Gram-negative isolates could be the most suitable therapeutic choice for most biofilm-DRIs.


2020 ◽  
Author(s):  
Ning Fan ◽  
Yong Hu ◽  
Shengjie Liu ◽  
Guang Zhao ◽  
Lanju Sun ◽  
...  

Abstract Background: Infection is one of the important causes of death in patients with severe acute pancreatitis (SAP), but the bacterial spectrum and antibiotic resistance are constantly changing. Making good use of antibiotics and controlling multi-drug-resistant (MDR) bacterial infections are important steps in improving the cure rate of SAP.Methods: A total of 171 patients were enrolled in this study; the abdominal drainage fluid, sputum, blood, bile, deep venous catheter and urine of patients were cultured, identified and tested for resistance with a blood culture apparatus and microbiological analyzer. The associated results and hospitalization data were analyzed. Results: A total of 461 strains of pathogenic bacteria were detected, including 223 (48.4%) gram-negative bacterial strains, 190 (41.2%) gram-positive bacterial strains and 48 (10.4%) fungal strains. The detection rates of resistance in gram-negative and gram-positive bacterial strains were 48.0% (107/223) and 25.3% (48/190), respectively. There were significant differences between the MDR group and the non-MDR group for the factors of precautionary antibiotic use, kinds of antibiotics used, receipt of carbapenem, tracheal intubation, hemofiltration and number of hospitalization days in the intensive care unit. Unconditional logistic regression revealed 2 risk factors for MDR bacterial infection. Conclusions: Our results illustrate that gram-negative bacteria were the most common pathogens in SAP infection, and the proportion of gram-positive bacteria increased notably. The rate of antibiotic resistance was higher than previously reported. Unconditional logistic regression analysis showed that using more types of antibiotics and the number of hospitalization days in the ICU were the risk factors associated with MDR bacterial infection.


Author(s):  
Amit Bhatia ◽  
Juhi Kalra ◽  
Saurabh Kohli ◽  
Barnali Kakati ◽  
Reshma Kaushik

Background: Antimicrobials are a major class of drugs prescribed in Intensive Care Unit (ICU). Widespread use of empirical antibiotic therapy has facilitated the emergence of drug resistance, since empirical therapy is very often initiated at the outset, even before culture and sensitivity reports are available. The problem of drug resistance is on a rise, therefore, this study was planned to assess the drug resistance and sensitivity patterns of the blood isolates recovered from ICU.Methods: An observational- prospective study was conducted in the Tertiary care teaching hospital over a period of twelve months to assess antibiotic resistance and sensitivity pattern. A total of 104 consecutive patients receiving antibiotics in the ICU and having blood cultures with significant growth were included in the study. Blood sample was collected and after obtaining a culture growth, the identification and antimicrobial sensitivity testing was done.Results: Blood stream infection by Gram-negative bacteria (50.96%) was more common than Gram-positive bacteria (49.04%). Coagulase negative Staphylococci (CoNS) was the predominant single blood culture isolate (35.58%). Klebsiella pneumoniae (13.46%), Escherichia coli (12.50%), Acinetobacter baumannii complex (7.69%) were commonly isolated gram negative organisms. Gram positive isolates were resistant to beta lactams in maximum patients whereas Tigecycline, Linezolid, Daptomycin, Vancomycin, Nitrofurantoin and Teicoplanin were sensitive against them. Common gram negative isolates were sensitive to Colistin and Tigecycline but resistant to most of the antibiotics.Conclusions: A preponderance of gram negative bacteria over gram positive bacteria was noted with a higher degree of resistance to most of the first line antimicrobial agents. 


Sign in / Sign up

Export Citation Format

Share Document