scholarly journals Distinct Characteristics of Correlation Analysis at the Single-Cell and the Population Level

2020 ◽  
Author(s):  
Guoyu Wu ◽  
Yuchao Li

Abstract Background:Correlation analysis is widely used in biological studies to infer molecular relationships within biological networks. Recently, single-cell analysis has drawn tremendous interests, for its ability to obtain high-resolution molecular phenotypes. It turns out that there is little overlap of co-expressed genes identified in single-cell level investigations with that of population level investigations. However, the nature of the relationship of correlations between single-cell and population levels remains unclear. In this manuscript, we aimed to unveil the origin of the differences between the correlation coefficients at the single-cell level and that at the population level, and bridge the gap between them. Results:Through developing formulations to link correlations at the single-cell and the population level, we illustrated that aggregated correlations could be stronger, weaker or equal to the corresponding individual correlations, depending on the variations and the correlations within the population. When the correlation-within is weaker than the individual correlation, the correlation at the population level is stronger than that at the single-cell level. Through a bottom-up approach to model interactions between molecules in a signaling cascade or a multi-regulator controlled gene expression, we surprisingly found that the existence of interaction between two components could not be excluded simply based on their low correlation coefficients, suggesting a reconsideration of connectivity within biological networks which was derived solely from correlation analysis. We also investigated the impact of technical random measurement errors on the correlation coefficients for the single-cell level and the population level. The results indicate that the aggregated correlation is relatively robust and less affected.Conclusions:Because of the heterogeneity among single cells, correlation coefficients calculated based on data of the single-cell level might be different from that of the population level. Depending on the specific question we are asking, proper sampling and normalization procedure should be done before we draw any conclusions.

2017 ◽  
Vol 114 (22) ◽  
pp. 5755-5760 ◽  
Author(s):  
Ryan Suderman ◽  
John A. Bachman ◽  
Adam Smith ◽  
Peter K. Sorger ◽  
Eric J. Deeds

Signal transduction networks allow eukaryotic cells to make decisions based on information about intracellular state and the environment. Biochemical noise significantly diminishes the fidelity of signaling: networks examined to date seem to transmit less than 1 bit of information. It is unclear how networks that control critical cell-fate decisions (e.g., cell division and apoptosis) can function with such low levels of information transfer. Here, we use theory, experiments, and numerical analysis to demonstrate an inherent trade-off between the information transferred in individual cells and the information available to control population-level responses. Noise in receptor-mediated apoptosis reduces information transfer to approximately 1 bit at the single-cell level but allows 3–4 bits of information to be transmitted at the population level. For processes such as eukaryotic chemotaxis, in which single cells are the functional unit, we find high levels of information transmission at a single-cell level. Thus, low levels of information transfer are unlikely to represent a physical limit. Instead, we propose that signaling networks exploit noise at the single-cell level to increase population-level information transfer, allowing extracellular ligands, whose levels are also subject to noise, to incrementally regulate phenotypic changes. This is particularly critical for discrete changes in fate (e.g., life vs. death) for which the key variable is the fraction of cells engaged. Our findings provide a framework for rationalizing the high levels of noise in metazoan signaling networks and have implications for the development of drugs that target these networks in the treatment of cancer and other diseases.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 285
Author(s):  
Eszter Széles ◽  
Krisztina Nagy ◽  
Ágnes Ábrahám ◽  
Sándor Kovács ◽  
Anna Podmaniczki ◽  
...  

Chlamydomonas reinhardtii is a model organism of increasing biotechnological importance, yet, the evaluation of its life cycle processes and photosynthesis on a single-cell level is largely unresolved. To facilitate the study of the relationship between morphology and photochemistry, we established microfluidics in combination with chlorophyll a fluorescence induction measurements. We developed two types of microfluidic platforms for single-cell investigations: (i) The traps of the “Tulip” device are suitable for capturing and immobilizing single cells, enabling the assessment of their photosynthesis for several hours without binding to a solid support surface. Using this “Tulip” platform, we performed high-quality non-photochemical quenching measurements and confirmed our earlier results on bulk cultures that non-photochemical quenching is higher in ascorbate-deficient mutants (Crvtc2-1) than in the wild-type. (ii) The traps of the “Pot” device were designed for capturing single cells and allowing the growth of the daughter cells within the traps. Using our most performant “Pot” device, we could demonstrate that the FV/FM parameter, an indicator of photosynthetic efficiency, varies considerably during the cell cycle. Our microfluidic devices, therefore, represent versatile platforms for the simultaneous morphological and photosynthetic investigations of C. reinhardtii on a single-cell level.


2009 ◽  
Vol 75 (13) ◽  
pp. 4550-4556 ◽  
Author(s):  
Vicky G. Kastbjerg ◽  
Dennis S. Nielsen ◽  
Nils Arneborg ◽  
Lone Gram

ABSTRACT Listeria monocytogenes has a remarkable ability to survive and persist in food production environments. The purpose of the present study was to determine if cells in a population of L. monocytogenes differ in sensitivity to disinfection agents as this could be a factor explaining persistence of the bacterium. In situ analyses of Listeria monocytogenes single cells were performed during exposure to different concentrations of the disinfectant Incimaxx DES to study a possible population subdivision. Bacterial survival was quantified with plate counting and disinfection stress at the single-cell level by measuring intracellular pH (pHi) over time by fluorescence ratio imaging microscopy. pHi values were initially 7 to 7.5 and decreased in both attached and planktonic L. monocytogenes cells during exposure to sublethal and lethal concentrations of Incimaxx DES. The response of the bacterial population was homogenous; hence, subpopulations were not detected. However, pregrowth with NaCl protected the planktonic bacterial cells during disinfection with Incimaxx (0.0015%) since pHi was higher (6 to 6.5) for the bacterial population pregrown with NaCl than for cells grown without NaCl (pHi 5 to 5.5) (P < 0.05). The protective effect of NaCl was reflected by viable-cell counts at a higher concentration of Incimaxx (0.0031%), where the salt-grown population survived better than the population grown without NaCl (P < 0.05). NaCl protected attached cells through drying but not during disinfection. This study indicates that a population of L. monocytogenes cells, whether planktonic or attached, is homogenous with respect to sensitivity to an acidic disinfectant studied on the single-cell level. Hence a major subpopulation more tolerant to disinfectants, and hence more persistent, does not appear to be present.


2011 ◽  
Vol 57 (7) ◽  
pp. 1032-1041 ◽  
Author(s):  
Thomas Kroneis ◽  
Jochen B Geigl ◽  
Amin El-Heliebi ◽  
Martina Auer ◽  
Peter Ulz ◽  
...  

BACKGROUND Analysis of chromosomal aberrations or single-gene disorders from rare fetal cells circulating in the blood of pregnant women requires verification of the cells' genomic identity. We have developed a method enabling multiple analyses at the single-cell level that combines verification of the genomic identity of microchimeric cells with molecular genetic and cytogenetic diagnosis. METHODS We used a model system of peripheral blood mononuclear cells spiked with a colon adenocarcinoma cell line and immunofluorescence staining for cytokeratin in combination with DNA staining with the nuclear dye TO-PRO-3 in a preliminary study to define candidate microchimeric (tumor) cells in Cytospin preparations. After laser microdissection, we performed low-volume on-chip isothermal whole-genome amplification (iWGA) of single and pooled cells. RESULTS DNA fingerprint analysis of iWGA aliquots permitted successful identification of all analyzed candidate microchimeric cell preparations (6 samples of pooled cells, 7 samples of single cells). Sequencing of 3 single-nucleotide polymorphisms was successful at the single-cell level for 20 of 32 allelic loci. Metaphase comparative genomic hybridization (mCGH) with iWGA products of single cells showed the gains and losses known to be present in the genomic DNA of the target cells. CONCLUSIONS This method may be instrumental in cell-based noninvasive prenatal diagnosis. Furthermore, the possibility to perform mCGH with amplified DNA from single cells offers a perspective for the analysis of nonmicrochimeric rare cells exhibiting genomic alterations, such as circulating tumor cells.


2020 ◽  
Author(s):  
Maria Anna Rapsomaniki ◽  
Stella Maxouri ◽  
Manuel Ramirez Garrastacho ◽  
Patroula Nathanailidou ◽  
Nickolaos Nikiforos Giakoumakis ◽  
...  

AbstractDNA replication is a complex and remarkably robust process: despite its inherent uncertainty, manifested through stochastic replication timing at a single-cell level, multiple control mechanisms ensure its accurate and timely completion across a population. Disruptions in these mechanisms lead to DNA re-replication, closely connected to genomic instability and oncogenesis. We present a stochastic hybrid model of DNA re-replication that accurately portrays the interplay between discrete dynamics, continuous dynamics, and uncertainty. Using experimental data on the fission yeast genome, model simulations show how different regions respond to re-replication, and permit insight into the key mechanisms affecting re-replication dynamics. Simulated and experimental population-level profiles exhibit good correlation along the genome, which is robust to model parameters, validating our approach. At a single-cell level, copy numbers of individual loci are affected by intrinsic properties of each locus, in cis effects from adjoining loci and in trans effects from distant loci. In silico analysis and single-cell imaging reveal that cell-to-cell heterogeneity is inherent in re-replication and can lead to a plethora of genotypic variations. Our thorough in silico analysis of DNA re-replication across a complete genome reveals that heterogeneity at the single cell level and robustness at the population level are emerging and co-existing principles of DNA re-replication. Our results indicate that re-replication can promote genome plasticity by generating many diverse genotypes within a population, potentially offering an evolutionary advantage in cells with aberrations in replication control mechanisms.


Author(s):  
Marta Mellini ◽  
Massimiliano Lucidi ◽  
Francesco Imperi ◽  
Paolo Visca ◽  
Livia Leoni ◽  
...  

Key microbial processes in many bacterial species are heterogeneously expressed in single cells of bacterial populations. However, the paucity of adequate molecular tools for live, real-time monitoring of multiple gene expression at the single cell level has limited the understanding of phenotypic heterogeneity. In order to investigate phenotypic heterogeneity in the ubiquitous opportunistic pathogen Pseudomonas aeruginosa, a genetic tool that allows gauging multiple gene expression at the single cell level has been generated. This tool, named pRGC, consists in a promoter-probe vector for transcriptional fusions that carries three reporter genes coding for the fluorescent proteins mCherry, green fluorescent protein (GFP) and cyan fluorescent protein (CFP). The pRGC vector has been characterized and validated via single cell gene expression analysis of both constitutive and iron-regulated promoters, showing clear discrimination of the three fluorescence signals in single cells of a P. aeruginosa population, without the need of image-processing for spectral crosstalk correction. In addition, two pRGC variants have been generated for either i) integration of the reporter gene cassette into a single neutral site of P. aeruginosa chromosome, that is suitable for long-term experiments in the absence of antibiotic selection, or ii) replication in bacterial genera other than Pseudomonas. The easy-to-use genetic tools generated in this study will allow rapid and cost-effective investigation of multiple gene expression in populations of environmental and pathogenic bacteria, hopefully advancing the understanding of microbial phenotypic heterogeneity. IMPORTANCE Within a bacterial population single cells can differently express some genes, even though they are genetically identical and experience the same chemical and physical stimuli. This phenomenon, known as phenotypic heterogeneity, is mainly driven by gene expression noise and results in the emergence of bacterial sub-populations with distinct phenotypes. The analysis of gene expression at the single cell level has shown that phenotypic heterogeneity is associated with key bacterial processes, including competence, sporulation and persistence. In this study, new genetic tools have been generated that allow easy cloning of up to three promoters upstream of distinct fluorescent genes, making it possible to gauge multiple gene expression at the single cell level by fluorescent microscopy, without the need of advanced image-processing procedures. A proof of concept has been provided by investigating iron-uptake and iron-storage gene expression in response to iron availability in P. aeruginosa.


2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Matthew Ryan Sullivan ◽  
Giovanni Stefano Ugolini ◽  
Saheli Sarkar ◽  
Wenjing Kang ◽  
Evan Carlton Smith ◽  
...  

AbstractThe inhibition of the PD1/PDL1 pathway has led to remarkable clinical success for cancer treatment in some patients. Many, however, exhibit little to no response to this treatment. To increase the efficacy of PD1 inhibition, additional checkpoint inhibitors are being explored as combination therapy options. TSR-042 and TSR-033 are novel antibodies for the inhibition of the PD1 and LAG3 pathways, respectively, and are intended for combination therapy. Here, we explore the effect on cellular interactions of TSR-042 and TSR-033 alone and in combination at the single-cell level. Utilizing our droplet microfluidic platform, we use time-lapse microscopy to observe the effects of these antibodies on calcium flux in CD8+ T cells upon antigen presentation, as well as their effect on the cytotoxic potential of CD8+ T cells on human breast cancer cells. This platform allowed us to investigate the interactions between these treatments and their impacts on T-cell activity in greater detail than previously applied in vitro tests. The novel parameters we were able to observe included effects on the exact time to target cell killing, contact times, and potential for serial-killing by CD8+ T cells. We found that inhibition of LAG3 with TSR-033 resulted in a significant increase in calcium fluctuations of CD8+ T cells in contact with dendritic cells. We also found that the combination of TSR-042 and TSR-033 appears to synergistically increase tumor cell killing and the single-cell level. This study provides a novel single-cell-based assessment of the impact these checkpoint inhibitors have on cellular interactions with CD8+ T cells.


2019 ◽  
Vol 30 (7) ◽  
pp. 811-819 ◽  
Author(s):  
Mengdie Wang ◽  
Beatrice S. Knudsen ◽  
Raymond B. Nagle ◽  
Gregory C. Rogers ◽  
Anne E. Cress

Centrosome abnormalities are emerging hallmarks of cancer. The overproduction of centrosomes (known as centrosome amplification) has been reported in a variety of cancers and is currently being explored as a promising target for therapy. However, to understand different types of centrosome abnormalities and their impact on centrosome function during tumor progression, as well as to identify tumor subtypes that would respond to the targeting of a centrosome abnormality, a reliable method for accurately quantifying centrosomes in human tissue samples is needed. Here, we established a method of quantifying centrosomes at a single-cell level in different types of human tissue samples. We tested multiple anti-centriole and pericentriolar-material antibodies to identify bona fide centrosomes and multiplexed these with cell border markers to identify individual cells within the tissue. High-resolution microscopy was used to generate multiple Z-section images, allowing us to acquire whole cell volumes in which to scan for centrosomes. The normal cells within the tissue serve as internal positive controls. Our method provides a simple, accurate way to distinguish alterations in centrosome numbers at the level of single cells.


1996 ◽  
Vol 148 (3) ◽  
pp. 427-433 ◽  
Author(s):  
K Noguchi ◽  
J Arita ◽  
A Nagamoto ◽  
M Hosaka ◽  
F Kimura

Abstract We investigated the effects of testosterone on FSH secretion from male rat anterior pituitary cells in culture at the single cell level. Anterior pituitary cells cultured with or without 10 ng/ml testosterone for 72 h were mono-dispersed and subjected to cell immunoblot assays for FSH. Cell blots specific for FSH were quantified by means of a microscopic image analyzer. The number of FSH-secreting cells detected as immunoreactive cell blots on the transfer membrane represented 4·1% of total pituitary cells applied on the membrane. The amount of FSH secreted by single cells varied from <20 to >8 000 fg/cell/h. The number of FSH-secreting cells was not changed by the addition of 10 ng/ml testosterone into the culture medium. Testosterone administration increased the mean FSH secretion by 64% after 3 h incubation, resulting in a shift to the right in the frequency distribution of FSH secretion from single cells. The total amount of FSH, namely the sum of FSH secreted by each FSH-secreting cell, was increased by 92% by the addition of testosterone. However, mean amounts of FSH secretion by the top ten cells of the largest secretor subgroup (>5 pg/cell/3 h) were not different between control and testosterone-treated groups. The present study analyzed, for the first time, FSH secretion from rat anterior pituitary cells at the single cell level. The results suggest that stimulation by testosterone of FSH secretion in vitro is not due to an increase in the number of FSH-secreting cells but to an increase in FSH secretion from each cell. Journal of Endocrinology (1996) 148, 427–433


Lab on a Chip ◽  
2016 ◽  
Vol 16 (13) ◽  
pp. 2440-2449 ◽  
Author(s):  
Soo Hyeon Kim ◽  
Teruo Fujii

The electroactive double well-array consists of trap-wells for highly efficient single-cell trapping using dielectrophoresis (cell capture efficiency of 96 ± 3%) and reaction-wells that confine cell lysates for analysis of intracellular materials from single cells.


Sign in / Sign up

Export Citation Format

Share Document